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The paper presents a detailed numerical analysis of the nonlinear fourth-order fractional reaction-
diffusion equation using the compact difference method. The introduction of the fourth-order fractional
derivative adds additional complexity to the equation, making its analytical solution challenging.
Therefore, a numerical approach becomes necessary to understand the behavior of the equation and
obtain approximate solutions. The compact difference method, known for its accuracy and efficiency
in solving differential equations, is used to discretize the spatial and temporal derivatives of the
equation. The fractional derivatives are approximated using suitable fractional difference operators.
The resulting system is solved iteratively using appropriate numerical techniques. The study delves
into a reaction-diffusion model utilized in brain gliomas, incorporating two different diffusion
functions. In order to achieve a thorough comprehension, the analysis is broadened to encompass

Nicolson) 2 various types of tissue environments. Diverse scenarios are scrutinized, with the diffusion coefficient
staying consistent to depict a uniform tissue environment. Furthermore, instances where the diffusion
coefficient changes spatially are explored, bringing heterogeneity into the model. This spatial diversity
accommodates the differing characteristics of distinct regions within the brain. Following this, the
examination is expanded to include heterogeneous tissue environments in two dimensions.

NOMENCLATURE
a parameter in the two-dimensional
Vv . .
BR (® 12 b H) simulation
Nt time step size in the accuracy test
Nx spatial grid size in the accuracy test
T final time in the evaluation
Greek Symbols
Subscripts i) Phi
used in the context of time steps, e.g., .
n un € Epsilon
representing spatial dimensions, e.g.,
X,y C(x,y,0) Mu
representing time, e.g., t = 50, t = 100,
t t= 650, t = 850 Square root symbol
Nx, Nt representing spatial and time grid sizes,
e.g., Nx x Nt
L2, L1 representing norms, e.g., L2Error,
L1Error

1. INTRODUCTION

A fourth-order compact difference method is a
numerical time-fractional 4™-order reaction-diffusion
equation. This method approximates the solution of the

*Corresponding Author Institutional Email:
mhmdhsnhmydhmwdalsltany@gmail.com (Mohammed Hasan
Hameed)

equation by discretizing the domain and using finite
difference approximations to represent the derivatives.
The block_centered finite_difference method is a
specific type of 4™M-order compact difference method that
has been applied to various types of differential
equations, including parabolic equations . technique used
to solve differential equations, specifically the non
linear. This method is known for its ability to
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approximate the exact solution and its derivatives while
preserving the local conservation of the problem. It is
particularly useful for problems with Neumann boundary
conditions, as it eliminates the need to separately
consider the numerical solution near the boundary. The
time-fractional 4r'-order reaction-diffusioon equation is
a mathematical model that describes the behavior of
certain physical and biological systems. It combines the
concepts of reaction and diffusion, as well as fractional
derivatives that capture the history dependence of the
system. The time-fractional derivative is especially
effective in accurately describing dynamic processes
with time variables. The block_centered finite-difference
method for the time-fractional 4™-order reactipn-
diffusion equatipn has not been widely studied in the
literature. However, there have been developments in
related areas, such as the block centered
finite_difference method for parabolic equations with
fractional-order time derivatives. These studies have
demonstrated the stability and convergence of the
method and provided error estimations for the
approximate solution and its derivatives. In summary,
the 4"-order compact difference method, specifically the
block-centered finite-difference method, is a promising
numerical technique for solving the nonlinear time-
fractional 4"-order reaction-diffusion equation. Further
research is needed to fully explore its potential and
develop efficient algorithms.

2. EVALUATION OF CONVERGENCE FOR THE
F_TRACKING METHOD IN A ONE-DIMENSIONAL
MODEL

In the "logistic diffusion model” (2.1)-(2.5) with
parameter values (B, W, a, b, H) = (0.40, 10.1, 1.1, 1.1,
1.1) and initial condition U0 = cos(x"2), we investigate
the effect of varying the temporal size while maintaining
a fine spatial resolution. The convergence and error
analysis of the " diffusion logistic model(crank-nicolson)
" are presented in Table 2.1 for a the concluding time of
t end = 1. The discrepancy is calculated, as the disparity
between the numerical solution and the exact solution,
whenever available. In cases where the exact solution is
not provided, the solutipn obtained employing a
meticulous level of detail is considered as the a
benchmark or precise solutipn. Notably, 25 In all
instances, a convergence of higher order is observed in
the spatial dimension.

TABLE 1. Accuracy test of U of diffusion logistic

TABLE 2. Accuracy results for  diffusion logistic model of
one dimension

Nx x Nt L2Error Order L1Error Order
®

61x2e06 1.68e-01 4.28e-02

121x2e06 2.72e-02 2.63 9.40e-03 2.19

241x2e06 6.20e-04 2.62 4.09e-04 2.36

481x2e06 4.36e-05 2.84 4,08e-05 2.33

961x2e06 Reference

Analysis of convergence the F- methodology for
stabilizing the one-dimensional: Considering the
population spread with logistic diffusion medal (2.1)-
(2.5) with parameter values (B, y, X, y, H0) = (0.400,
10.1, 1.1, 1.1, 1.1) and initial condition UO = cos(x"2),
we investigate the impact of varying the temporal size
while maintaining a fine spatial resolution. Table 2.2
presents an examination of the error (both L-2 and L11
norms) and the convergence behavior of the "front-fixing
method", with a the concluding time of t_end = 1. As
anticipated, a 2%9- convergence of a certain degree in the
spatial dimension is readily noticeable .

3. CONVERGENCE TEST FOR DIFFUSION LOGISTIC
MODEL(CRANK-NICOLSON) OF 2D MODEL WITH
RADIAL-SYMMETRY

We investigate the 2D The logistic diffusion
model exhibiting radial symmetry, characterized by
parameters (B, W, X, y, H) = (0.400, 10.1, 1.1, 1.1, 0.54),
and an initial condition of U0 = cos(r/2). This model
serves as a test case for evaluating the performance of
the F-tracking- method. In Table 3.1, we examine the
discrepancy (both in terms of L_2 and L_1 norms) and
the spatial convergence order of the F-tracking -
method's solution, with a final time of T = 0.0100. Once
again, we observe a 2"- convergence rate in the spatial
dimension. The convergence test for the F-fixing method
applied to the 2D model with radial symmetry is
presented in Table 3.2, showing the accuracy results
obtained.

TABLE 3. Accuracy test of U of
model(Crank-Nicolson )

diffusion logistic

Nx x Nt L2Error Order L.Error Order
71x2e04 6.50e-04 2.71e-04

141x2e04 1.40e-04 2.20 5.35e-04 2.14
281x2e04 3.20e-05 2.15 1.10e-04 2.10
561x2e04 6.36e-06 2.38 2.08e-05 2.35
1121x2e04 Reference

Nx x Nt L2Error Order L1Error Order
®

61x2e06 4.10e-003 4.4e-03

121x2e06 9.40e-004 2.250 9.35e-004 2.14

241x2e06 2.20e-004 2.160 2.10e-004 2.10

481x2e06 4.36e-05 2.360 4,08e-05 2.33

961x2e06 Reference
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TABLE 4. Accuracy results for diffusion logistic model
(Crank-Nicolson ) of one-dimensional

Nx x Nt L2Error Order L1Error Order
®

71x2e05 3.68e-01

141x2e05 6.72e-02 2.15 1.40e-03 222

241%2e05 1.20e-04 214 2.09e-04 214

581%2e05 3.36e-05 2.34 2.08e-05 2.35

1121x2e05 Reference

In this section, we conduct drawing a parallel
between, the diffusion logistic model(Crank-Nicolson )
and the diffusion logistic model for simulating the 2°
population spread through logistic diffusion exhibiting
radial symmetry. The model is characterized by
parameters (B, Y, X, y, H0) = (0.400, 10.1, 1.1, 1.1, 1.1),

an initial condition of U0 = cos (g) and a dimensional

magnitude of h = 0.00625. It Illustrates that the"
diffusion logistic model(Crank-Nicolson ) " closely
aligns with the  one-dimensional when applied to the 2P
spread of  diffusion logistic model(crank-nicolson )
with radial symmetry. To analyze the approach based on
level sets for the 2D model, we perform numerical tests
and convergence analysis. The approach based on level
sets is employed to study the two-dimensional logistic
diffusion model displaying radial symmetry, described
by equations (2.39)-(2.43) with parameters (B, |, X, y) =
(0.400, 10.1, 1.1, 1.1). The initial level set function
represents a circle with a radius of 1, and the initial
condition is depicted using a red dotted curve to
visualize the simulated species boundary. Additionally, a
blue circle is introduced to indicate the resemblance of
the evolving boundary with a circle. The measurement of
the circumference of the blue circle, denoted as R, is
calculated as the mean separation among the intersection
points of ¢(t) with the x-axis and y-axis at the boundary
and the point of origin, i.e., R = V(x2 + y*2), where (x,
y) € ¢(t) represents all the intersection points of ¢(t) with
the x-axis and y-axis. According to reference [13], the
resolution of the equations. (2.21)-(2.24) is unique and
exhibits radial symmetry. It displays the progression
of U(t, x, y) and ¢(t), demonstrating a perfect match
between the blue circle and the red dotted curve,
indicating the preservation of the geometric shape of the
boundary ¢(t). Furthermore, it is noticeable that .U(t, X,
y) exhibits radial symmetry, similar to U0. Our attention
is directed towards the measurement of the boundary's
radius. ¢(t), denoted as H(t), and utilize U(t, r) = U(t, X,
y) to examine the spatial accuracy order of the approach
based on level sets technique. The assessment of the
convergence of the solution for u(r) at T = 0.100 and the
front H(t) can be performed.

4. COMPARISON AND CONVERGENCE ANALYSIS.
Observing the comparison between the level set
method and the F- tracking -method, we consider

different spatial sizes, namely h = 0.02500, h =
0.012500, h = 0.0062500, and h = 0.00312500. The
obtained results are then compared to those of the F- a
tracing approach using identical initial conditions
configuration and step size h = 0.00312500. The
comparison clearly demonstrates a high degree of
consistency between the level set method and the front
tracking method, indicating their agreement with each
other. To further assess the performance of the level set
method, Table 1 provides an analysis of the error (both
L-2 and L-1 norms) and the convergence order for the
solution gained through employing the level set
technique, culminating at a designated endpoint of T =
0.1. The table presents findings indicating the
convergence rates in regard pertaining to both the
solution u and the leading edge H(t) fall within the range
of 1to 2.

TABLE 5. Accuracy test of U of
model(crank-nicolson )

diffusion logistic

Nx x Nt L2Error Order L.Error Order
28x28x161 5.50e-04 9.71e-04
58x58x166 3.40e-04 0.20 5.35e-04 0.14
112x112x2530 1.20e-05 1.15 2.10e-04 1.10
240%240x1050 4.36e-06 1.38 7.08e-05 1.35
551x551x41951 Reference

TABLE 6. Accuracy results for diffusion logistic model(crank-
nicolson ) of one- dim

Nx x Nt L2Error Order L1Error Order
(®

28x28x161 4.68e-01

58x58x166 2.72e-02 1.15 5.40e-03 1.22

112x112x2530 8.20e-04 1.14 2.09e-04 1.14

240%240x1050 2.36e-05 1.34 3.08e-05 1.35

551x551x41951 Reference

5. NUMERICAL DICHOTOMY THE DICHOTOMY
BETWEEN EXPANSION AND DISAPPEARANCE

Example 1 : The one-dimensional diffusive
logistic model with a free boundary, as formulated in
reference [14], is used to describe the population density
of the invasive species U(t, X), where it depends on time
t and the spatial variable x, as stated in the following

expression:
0y Dazu—u( bu),t > 0
ot oxx - ’ ’

x€ (0,H®], (2.1)

In addition to the boundary conditions, the text
emphasizes the importance of considering all relevant
factors
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U = 0U(t,H())= 0t > 0,(2.2
the Stefan condltlon
How= ——r2Y S0 23
— ax(tH®)' o

and the initial conditions

H(0) = HOU (0,x) = U°(x),0 < x < H®.(2.4)
The function Uo(x) fulfills the subsequent properties:
u® (x) € C2([0,H°D,u% (0) =uU® (H®) = 0,u° (%)
> 0,0 < x < H(2.5)

H(t) represents the mysterious shifting boundaries
within which the population is dispersed within the range
[0, H®)]. D > 0 is the rate of dispersal, with the
parameters a and b indicating the intrinsic diffusion rate
and intraspecific competition within the population,
respectively.  The parameter p > 0 . The Stefan
condition (2.3) specifies the constant of proportionality
that relates the population gradient at the front to the
velocity of the advancing boundaries.

Example 2 :of the free boundary logistic diffusion model
(2.1)-(2.5), with parameter values (D, y, a, b, Ho) = (1, 5,

1,1, 0.496) and U° = cos( ) it can be observed from

Figure 2.12 the spreading behavior that occurs even
when Ho = 0.496, which is less than the value of L =
1.571.

As another example, in the free boundary logistic
diffusion model (2.1)-(2.5), we set the parameter values
as follows: D=1, u=5,a=1,b=1, and Ho = 0.496.

The initial function is given by U° (x) = ( )cos (Z’Z‘O)

In this example, we keep the parameter values the same
as in the previous example except that we decrease the
initial value U.

6. REACTION-DIFFUSION EQUATION IN TWO
DIMENSIONS

In this section, an evaluation of the stability of
the linear system will be performed using the von
Neumann technique of finite difference method derived
from the two-dimensional equation of the linear model.

The evaluation includes a spread component that
increases rapidly and acts as an interactive term.

0
ot aa—xD(x)ax —aD(g)ay
" aC aC +pC. ( 32)
From the construction of the derivative of the two-
dimensional interaction and interaction equation, which
includes the coupled covariant isolation function,
different terms can be reformulated to indicate a
component of the term. Negotiate the system of equation
(32) in a completely different way:
2D(x;)At  2D(x))At pAt?

— 2 T3 Cint1if)
hZ(C{nH,i_Lj} + C{n+1,i+1.j})
D(Xl)At

k2(Cinprijo1; + Consrijen))
2D(x)At  2D(x;)At

=1 h2 K2
pAt?
+ = Cip
h?(Cinirsjy + Crnicisy)
D(Xl)At

K2(Cnijen) + Cnij-1)

_ D(ng ( (Cx) 0+ — (CX)S—LJ'})
~ D(x,)At ( (Cx )g++11,j}} _ (Cx)g:l'j}})
—D(ZIZ“((C i (ey)in)
-2 (enfis) - @)
+LX‘2)M (ol + @fl,).

The compact solutions algebraic systems linked
to the finite difference approximation (23) that can be
rewritten in a different manner offer several advantages.
One of the most compelling reasons is the presence of
the innate characteristic of generating the resulting
system of equations which contains symmetric
coefficient matrices equations. Moreover, these matrices
possessing a comparatively smaller range of frequencies
compared to decreased bandwidth that stems from non-
compact solutions are particularly advantageous since
they result in more efficient and computationally feasible
solutions. Now, let us delve into the methods for solving
these algebraic systems using the following notations:

U= [C1,C2,..,Cm],
= [(Cx)1,(Cx)2, ..., (Cx)m]

The matrix representation of the system of equations is
as follows:
A1U U™1= B1(U™U x™ U x™1) (34)
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Once the approximation of U”n has been achieved at
any given time step, U x™ can be obtained by solving
tridiagonal systems

A2 U x™ = B2 U™ (35)
Equation (35) represents the matrix form associated with
relations (8), which are tridiagonal systems that can be
effectively resolved through the use of powerful
numerical algorithms. The main goal is to solve the
system (23) to estimate the unknown transporter vector
UMN(n+1). Our approach faces significant challenges
when incorporating the (n + 1)-the time level gradients
of U on the left-hand side of Equation (34). These
gradients are only available after determining the
transportation parameter at the time level of (n + 1). To
overcome this issue, we implement a convergence
correction strategy. Despite the large dimensions of the
coefficient matrix., we effectively tackled this obstacle
by employing the bi-conjugate gradient stabilized
(BiCG-Stab) technique, eliminating the necessity for
preconditioning.
The convergence condition for the BiCG-Stab iteration
is. influenced by the size of the grid and the specific
characteristics of the problem at hand. This approach is
also applied when simulating other discussed schemes in
this research, both in one or two dimensions. In the
numerical experiments conducted in one aspect, we
made use of an assortment one hundred and one spatial
grids spanning from O to 50. The time step used was At =
0.02 days, which is approximately equivalent to 28.8
minutes. As for the data related to the two-dimensional
simulation, the values were as follows .: epsilon =
0.0100, h = 0.500 mm, k = 0.500 mm, and the growth
rate p = 0.012000 day”(—1). Initially, the particles were
placed at the location (x,, y,) = (25, 25), and we used a
time step At of 0.02 days (~28.8 min). The load capacity

K was determined to be 62.5%“ and the maximum

mm
cells

value of C(x, y, 0) was 39.89W. Throughout the

simulation, we maintained fivefold differences in
diffusion coefficients between gray matter and white
matter: Dypite ® 5Dgrqy. The proliferation rate p was
set at 0.01200 day™?, according to the model proposed
by Swanson and colleagues for high-grade tumors [36].

All calculations were performed at maximum power,
cells

with K = 62.5 — and we used the following initial
distribution:
1 1\ (x—xg)\?
C(x,0) = ( )* e_(f)*( € )
(x.0) V2me

At the middle of the considered period, the
position x, = 25 mm was determined, and the
parameter epsilont was estimated to be 0.0100. When
examining the distribution of C(x, 0), a peak appears at

X = x,, with a value of about 39.89 C:llrf This value,
called C,, represents the local density of the tumor of
about 39.89 £

5 before it begins to spread.
mm

After reviewing Figures 4a and 4b, it becomes clear that
the concentration of primary tumor cells significantly

decreases from 39.89 = to 8.2 within one day
. mm mm

using the known 40-CEFE method. On the other hand,

the concentration remains constant at 10.62 ;;:i using

the known IBE method. Figures 5a, 5b, 6a, and 6b
demonstrate the concentration of motor neuron tumor
cells relative to the variable x using IBE on the left side
and 40-CEFE on the right side. In the simulation, a
value of p = 0.0129day 1, At = 0.024 minutes
(approximately 28.8 minutes), and Ax = 0.5 mm were
used, covering time periods of t € (100,200) and
t(1050,1280. In Figure 5b, it is evident that the 40-CEFE
method outperforms the IBE method by t = 200 days,

with a tumor cell concentration of 3.95 < compared to

2.25 ;Z:SZ in the IBE method during the time period of

t € [1050,1280 ] . According to Ozugurlu [23], it took
1470 days using the 40-CEFE method and 2300 days
using the IBE method to reach maximum capacity

(K = 624989979 <2, The data depicted in Figures
mm

6a and 6b showcases the information. It should be noted
that the data in Figure 6a only goes up to 1280 days. The
value of x_0 was set at 25 mm as the center for the
analysis period. The coefficient € is estimated to be
approximately 0.0100. The cell distribution C(x, 0)
exhibits a peak at x = x,, estimated at around

39.89 ;e—:rii denoted as C,, showing the tumor reaching a

local density of approximately 39.89 <22

spread begins.

The research conducted by Ozugurlu [23] aims to
compare the results obtained using the IBE method with
those obtained using the 40-CEFE method. By studying
Figures 4A and 4B, it becomes evident that the
concentration of primary tumor cells significantly

decreases from 39.89 <2282 < \ithin one day
. mm<to mm i

using the 40-CEFE method. Meanwhile, the

concentration remains constant at 10.62 :::isz using the

IBE method. Figures 5A, 5B, 6A, and 6B illustrate the
concentration of motor neuron sarcoma cells with respect
to the variable x. The left side represents the IBE
method, while the right side represents the 40-CEFE
method. The simulation was performed using the
values p = 0.012 day~1,At = 0.02 minutes

(approximately 28.8 minutes), and Ax = 0.5 mm,
spanning the time periods t € [100,200] and t€
[1050,1280] . Figure 5B indicates that the 40-CEFE
method outperforms the IBE method by t = 200 days,

with a tumor cell concentration of 3.95 <compared to

Ci
mm
2.25 ::ZSZ in the IBE method during the time period t €

(1050,1280). According to Ozugurlu [23], it took 1470
days using the 40-CEFE method and 2300 days using

mm?2

before its

mm?2
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the IBE method to reach the maximum capacity (K =

62.4989979 2), as shown in Figures 6A and 6B. It
mm

should be noted that the data in Figure 6A the time frame
is restricted to a maximum of 1280 days.

cells

(c) The concentration of the | (d) The concentration of the
tumor after five days (t=50). | tumor after five days (t = 100).

Figure 1. The depiction of glioma concentration in a 2-
dimensional diffusion logistic model within a heterogeneous
tissue environment is presented with respect to position at
different time intervals.

(c) The concentration of the tumor after five days (t = 650).

Figure 2. The diagram depicts the fluctuation of glioma tumor
levels in a two-dimensional logistic diffusion model across a
diverse tissue setting at various time points and positions.

(a) The concentration of the | (b) The concentration of the
tumor after five days tumor after five days
(t = 1500) days. (t=1700).days

(c)The concentration of the | (d) The concentration of the
tumor after five days (t = | tumor after five days (t =
15). 450).

Figure 3. depicts the concentration of glioma tumor in a
two-dimensional  diffusion logistic model within a
heterogeneous tissue environment, with respect to position

at various time steps

7. CONCLUTION

Our study aims to introduce different variables
into the model by considering spatial variation. This
spatial variation is taken into account for the varying
properties observed within the system. By integrating
disparate tissue environments, we obtain a more
comprehensive understanding of the behavior and
dynamics of the model. These studies allow us to
capture the complexity and detail of real-world
scenarios, particularly regarding Gliomas of the brain.
Overall, our results highlight the importance of
considering spatial variability and its impact on the
overall behavior of the system.
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