

Journal homepage: https://journals.uokerbala.edu.iq/index.php/UOKJ

Research Article

Academic Scientific Journals

New Types of Fuzzy Ideals in KU-algebra

¹Asst. Lect. Haider K. Jawad, ²Abbas A. AL-asdi, ³Wisam J. Kareem ^{1,3}The General Directorate of Education in Najaf, Iraq

² The General Directorate of Education in Karbala, Iraq

Article Info

Article history:

Received 8-06-2022

Received in revised form 7-08-2022

Accepted 26-09-2022

Available online 06-06-2022

Keywords: KU-algebra, fuzzy subalgebra of type KU, B.D algebra of type KU and fuzzy ideal.

Abstract

We introduce in this research, new types of fuzzy ideals of an algebra of type KU : Fuzzy Complete Ideal, Fuzzy E-Ideal and Fuzzy Complete E-Ideal, respectively. In addition, some propositions explained relationships with these fuzzy ideals types.

Corresponding Author E-mail : 1 haiderkazim1989@gmail.com

2 aaabb19990@gmail.com

3 wiisamtweej@gmail.com

Peer review under responsibility of Iraqi Academic Scientific Journal and University of Kerbala.

1. Introduction

In [10], Leerawat and Prabpayak introduced congruences and ideals in algebras of type BCC [1,6], also studied and introduced a new algebraic structure which is denoted by algebra of type KU or KU-algebra, also investigated some related properties. Jawad and AL-Shaher [7] studied new types of ideals of KU-algebras, and also stated the relationship between them. Zadeh [13] introduced the notion of fuzzy sets. Dudek et al studied fuzzy ideals, also several fuzzy structures in BCC-algebras are considered

2. Basic Concepts and Notations

In this section, we introduce definitions in KU-g , B.D KU-involutory , complete ideal ,

Definition (2.1)[10, 11]

Algebra $(Y, \diamond, 0)$ with type (2, 0) is called KU-algebra and we will denote by KU-g, if it hold the axioms:

(1) $(r \circ s) \circ ((s \circ t) \circ (r \circ t)) =$ constant 0, $\forall r, s, t \in Y$ (2) $r \circ 0 = constant 0$ (3) constant $0 \circ r = r$ (4) $r \circ s = constant 0$ and $s \circ r =$ constant 0 implies r = s

Theorem (2.2)[8]

In any KU-g Y, then the following hold: $\forall r, z, t \in Y$ (1) $r \leq z$ imply $z \diamond t \leq r \diamond t$

Definition (2.3)[12]

If an element "e" of a KU-g Y hold $r \leq e$ for all $r \in Y$, then the element "e" is said to be a unit in Y. A KU-g with unit is denoted by the bounded (or by B.D)

Lemma (2.4)[7]

Proposition (2.5)[7]

In any B.D KU-g Y, the following are hold: For any $k, s \in Y$, (1) $k^{\circ\circ} \leq k$ [2,3,4]. Moreover, Mostafa et al [8] studied the notion of fuzzy KU-ideals of KU-algebras and then they investigated several basic properties which are related to fuzzy KUideals. Mostafa and Kareem [9] introduced fuzzy n-fold KU-ideals of KU-algebras and obtained some related results. The aim of this paper is to introduce fuzzy complete ideal, fuzzy

E-ideal, fuzzy complete E-ideal in KUalgebras, also some of the basic properties are investigated.

E-ideal , complete E-ideal , fuzzy KU-ideal, fuzzy KU-subalgebra, fuzzy ideal, and some of their properties.

(5) $\mathbf{r} \circ \mathbf{r} = constant \ 0$ And in Y define a binary relation \leq by : $\mathbf{r} \leq \mathfrak{s} \quad iff \quad \mathfrak{s} \circ \mathbf{r} = constant \ 0$, for all $\mathbf{r}, \mathfrak{s} \in Y$. Thus a KU-g Y hold the conditions : (1) $\mathfrak{s} \circ \mathbf{r} \leq \mathbf{r}$

- (2) constant $0 \leq r$
- (3) $r \leq s$, $s \leq r$ implies r = s
- (4) $(\mathfrak{s} \circ \mathfrak{t}) \circ (\mathfrak{r} \circ \mathfrak{t}) \lesssim (\mathfrak{r} \circ \mathfrak{s})$
- (2) $(((z \circ r) \circ r) \circ r) = z \circ r,$ (3) $((z \circ r) \circ r) \leq z$ (4) $r \circ (z \circ t) = z \circ (r \circ t)$

In B.D KU-g *Y*, we denote $\mathbf{r} \diamond e$ by \mathbf{r}^{\diamond} for any $\mathbf{r} \in Y$.

It is easy to see that $e^{\circ} = constant 0$, $0^{\circ} = e$.

The unit of B.D KU-g is a unique.

- (2) $k \diamond \mathfrak{s}^{\diamond} = \mathfrak{s} \diamond k^{\diamond}$
- (3) $k^{\circ} \diamond \mathfrak{s}^{\circ} \lesssim \mathfrak{s} \diamond k$,
- (4) If $\mathfrak{s} \lesssim k$ implies $k^{\circ} \lesssim \mathfrak{s}^{\circ}$
- (5) $e^{\circ} \lesssim k$

Definition (2.6)[11] Let \mathcal{A} be a nonempty subset of a KU-g Y. Then \mathcal{A} is said to be a

Definition (2.7)[10, 11]

Let \mathcal{A} be a nonempty subset from a KUg Y. Then \mathcal{A} is said to be an ideal from Y, if

Proposition (2.8)[10] Every ideal in KU-g is KU-subalgebra.

Definition (2.9)[8]

Let \mathcal{A} be a nonempty subset from a KU-g Y. Then \mathcal{A} is said to be a KU-ideal from Y, if

Definition (2.10)[7]

Let \mathcal{A} be a non-empty subset in KU-g Y is denoted be complete ideal (briefly, c-ideal), if

Definition (2.11)[7]

Let *Y* be B.D KU-g. An element $r \in Y$ satisfies $r^{\circ \circ} = r$, then r is called an

Definition (2.12)[7]

Let \mathcal{A} be a non-empty subset in B.D KU-g Y is called E-ideal if, for all $r \in Y$

Definition (2.13)[7]

Let \mathcal{A} be a non-empty subset in B.D KU-g *Y* is denoted be complete E-ideal (briefly, c-E-ideal), if

Proposition (2. 14)[7]

Proposition (2.15)[7]

Definition (2.16)[13]

Let Y be set and let φ be a fuzzy set (or fuz. set) in Y is define the mapping φ : $Y \rightarrow [0,1]$.

Definition (2.17)[5]

If φ and ρ are two fuz. sets in Y. Then (1) $(\varphi \cap \rho)(\mathbf{r}) = min\{\varphi(\mathbf{r}), \rho(\mathbf{r})\}$, for all $\mathbf{r} \in Y$. (2) $(\varphi \cup \rho)(\mathbf{r}) = max\{\varphi(\mathbf{r}), \rho(\mathbf{r})\}$, for all $\mathbf{r} \in Y$ $\varphi \cap \rho$ and $\varphi \cup \rho$ are fuz. sets of Y. KU-subalgebra of *Y*, if $\mathfrak{r} \circ \mathfrak{s} \in \mathcal{A}$, whenever $\mathfrak{r}, \mathfrak{s} \in \mathcal{A}$.

(1) constant $0 \in \mathcal{A}$

(2) $\forall r, s \in Y$, if $s \diamond r \in \mathcal{A}$ and $s \in \mathcal{A}$ imply $r \in \mathcal{A}$.

(1) constant $0 \in \mathcal{A}$ (2) $\forall r, s, t \in Y$, if $r \circ (s \circ t) \in \mathcal{A}$ and $s \in \mathcal{A}$ imply $r \circ t \in \mathcal{A}$.

(1) constant $0 \in \mathcal{A}$ (2) $\mathfrak{s} \diamond k \in \mathcal{A}$, $\forall \mathfrak{s} \in \mathcal{A}$ s.t $\mathfrak{s} \neq$ constant 0 implies $k \in \mathcal{A}$.

involution. If every element $r \in Y$ is an involution, we call Y is a KU- involutory algebra.

(1) constant $0 \in \mathcal{A}$ (2) $\mathbf{r} \diamond k^{\circ} \in \mathcal{A}$ and $k \in \mathcal{A}$ implies $\mathbf{r}^{\circ} \in \mathcal{A}$.

(1) constant $0 \in \mathcal{A}$ (2) $\mathbf{r} \circ \mathbf{s}^{\circ} \in \mathcal{A}$, for all $\mathbf{s} \in \mathcal{A}$ such that $\mathbf{s} \neq constant 0$ implies $\mathbf{r}^{\circ} \in \mathcal{A}$, $\forall \mathbf{r} \in Y$.

Every c-ideal of B.D KU-g is c-E-ideal.

If \mathcal{A} be c-E-ideal in KU-involutory algebra *Y*, then \mathcal{A} is c-ideal.

If φ and ρ be two fuz. subsets in *Y*, then $\varphi \subseteq \rho \iff \varphi(\mathfrak{r}) \le \rho(\mathfrak{r})$, for all $\mathfrak{r} \in Y$.

In general , if $\{ \varphi_{\alpha} : \alpha \in \lambda \}$ is family of fuz. sets of *Y* , then

 $\bigcap_{\alpha \in \lambda} \varphi_{\alpha}(\mathbf{r}) = inf \{ \varphi_{\alpha}(\mathbf{r}), \alpha \in \lambda \}, \text{ for all } \mathbf{r} \in Y \text{ and } \\ \bigcup_{\alpha \in \lambda} \varphi_{\alpha}(\mathbf{r}) = sup \{ \varphi_{\alpha}(\mathbf{r}), \alpha \in \lambda \}, \text{ for all } \mathbf{r} \in Y$

Which are also fuz. sets in *Y*.

Definition (2.18)[8]

Let Y be KU-g. φ be a fuz. set in Y is denoted be a fuz. KU-subalgebra in Y if it hold, $\forall k, s \in Y$:

Definition (2.19)[8]

Let Y be KU-g. A fuz. set φ of Y is called fuz. KU-ideal in Y if it hold, $\forall k, \mathfrak{s}, \mathfrak{t} \in$ Y: (1) φ (constant 0) $\geq \varphi(k)$

Lemma (2.20)[8] Let φ be fuz. KU-ideal in KU-g Y, if $\mathfrak{r} \diamond \mathfrak{s} \lesssim \mathfrak{t}$ is hold, then $\varphi(\mathfrak{s}) \geq \min\{\varphi(\mathfrak{r}), \varphi(\mathfrak{t})\}$

Definition (2.21)[8]

Let φ be fuz. set of a KU-g Y is called fuz. ideal of Y if, $\forall r, s \in Y$

Lemma (2.22)[9]

Let φ be fuz. subset in KU-g Y. Then $(1) \cong (2)$ if:

Lemma (2.23)[9]

Every fuz. KU-ideal in KU-g Y is fuz. KU-subalgebra.

Remark (2.24)[9] The converse of lemma (2.23) is not true as shown in the example .

(1) $\varphi(\text{constant } 0) \ge \varphi(k)$ (2) $\varphi(k \land z) \ge \min\{\varphi(k), \varphi(z)\}$

(2) $\varphi(k \diamond \mathfrak{s}) \geq \min\{\varphi(k), \varphi(\mathfrak{s})\}$

(2)
$$\varphi(k \circ t)$$

$$\geq \min\{\varphi(k \circ (\mathfrak{s} \circ t)), \varphi(\mathfrak{s})\}$$

(1) φ (constant 0) $\ge \varphi$ (r) (2) φ (r) $\ge min\{\varphi(\mathfrak{s} \diamond \mathfrak{r}), \varphi(\mathfrak{s})\}$

φ is fuz. ideal
 φ is fuz. KU-ideal

Example (2.25)[9]

Consider $Y = \{0,1,2,3,4\}$ be set as shown in the table:

ہ	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	3	4
2	0	1	0	3	4
3	0	0	0	0	4
4	0	0	0	0	0

Then $(Y,\diamond, constant 0)$ is a KU-g. Define the fuz. set $\varphi : Y \rightarrow [0,1]$ by : $\varphi(\mathbf{r}) = \begin{cases} 1 & if \ \mathbf{r} = 0,2,3 \\ 0.5 & if \ \mathbf{r} = 1,4 \end{cases}$

Notice that φ is fuz. KU-subalgebra in Y.

Proposition (2.26)

Let φ be fuz. KU-subalgebra in a KU-g Y, if $k \diamond \mathfrak{s} \leq \mathfrak{t}$ and the inequality $\varphi(\mathfrak{s}) \geq \min\{\varphi(k), \varphi(\mathfrak{t})\}$ hold, $\forall k, \mathfrak{s}, \mathfrak{t} \in Y$. Then φ is fuz. KU-ideal of Y. **Proof:** Let φ be a fuz. KU-subalgebra of Y. But φ is not fuz. KU-ideal in Y, since $\varphi (0 \diamond 1) = 0.5$ $\ge \min\{\varphi (0)\}$

$$(3 (3)), \varphi(3) = 1$$

Now, by using Definition (2.18) we get $\varphi(constant 0) \ge \varphi(k)$, $\forall k \in Y$. Let $k, s \in Y$, from Theorem (2.2)(3) we have $(s \diamond k) \diamond k \le s$, then $\varphi(k) \ge min\{\varphi(s), \varphi(s \diamond k)\}$ (By the condition above). So φ is fuz. ideal of Y, this mean φ is fuz. KU-ideal of Y.

3. The Main Results

We provide definitions in this section : fuz. complete ideal, fuz. E-ideal, fuz. complete

Definition (3.1)

Let \mathcal{A} be a c-ideal in B.D KU-g Y. Then the fuz. subset $\varphi_{\mathcal{A}}: Y \longrightarrow [0,1]$ is called fuz. complete ideal (briefly, fuz. c-ideal) if , $\forall r \in Y$ and $\mathfrak{s} \in \mathcal{A}$

Example (3.2)

Consider the following KU-g Y, [8] with the following table:

\$	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	1	0	3	3
3	0	0	2	0	2
4	0	0	0	0	0

Notice that Y is B.D with unit 4.

A subset $\mathcal{A} = \{0,1,2\}$ is c-ideal of Y. $\varphi_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.4 & if \ \mathbf{r} = 0,1,4 \\ 0.3 & if \ \mathbf{r} = 2,3 \end{cases}$ Then $\varphi_{\mathcal{A}}$ is fuz. c-ideal in Y. While $\rho_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.3 & if \ \mathbf{r} = 0,1,2,3 \\ 0.2 & if \ \mathbf{r} = 4 \end{cases}$ is not fuz. c-ideal in Y, since

Proposition (3.3)

Every fuz. ideal in B.D KU-g is a fuz. c-ideal.

Proof:

Let \mathcal{A} be a c-ideal, $\varphi_{\mathcal{A}}$ be fuz. ideal of B.D KU-g Y, then by Definition (2.21) we have : $\forall k, s \in Y$ (1) $\varphi_{\mathcal{A}}$ (constant 0) $\geq \varphi_{\mathcal{A}}$ (k)

Remark (3.4)

The conversely of the prop. (3.3) is false as in the next example.

Example (3.5)

In example (3.2), $\varphi_{\mathcal{A}}$ is fuz. c-ideal in Y (when $\mathcal{A} = \{0,1,2\}$), but it 's not fuz. ideal, since $\varphi_{\mathcal{A}}(2) = 0.3 \ge \min\{\varphi_{\mathcal{A}}(4 \diamond 2), \varphi_{\mathcal{A}}(4)\} = 0.4$ If $\varphi_{\mathcal{A}}$ is fuz. set defined as :

$$\rho_{\mathcal{A}}(4) = 0.2$$

$$\geq \min\{\rho_{\mathcal{A}}(2)$$

$$\diamond 4), \rho_{\mathcal{A}}(2)\} = 0.3$$

(2)
$$\varphi_{\mathcal{A}}(k) \ge \min\{\varphi_{\mathcal{A}}(\mathfrak{s} \otimes k), \varphi_{\mathcal{A}}(\mathfrak{s})\}$$

Since $\mathcal{A} \subseteq Y$, then $\varphi_{\mathcal{A}}(k) \ge \min\{\varphi_{\mathcal{A}}(\mathfrak{s} \otimes k), \varphi_{\mathcal{A}}(\mathfrak{s})\}$, for every $\mathfrak{s} \in \mathcal{A}$
Thus $\varphi_{\mathcal{A}}$ is fuz. c-ideal of Y.

Corollary (3.6)

Let \mathcal{A} be c-ideal in KU-involutory algebra *Y*. A fuz. subset $\varphi_{\mathcal{A}}$ is fuz. c-ideal if and only if satisfies

 $\begin{array}{l} \forall \ k \in Y \ \text{and} \ \forall \ \mathfrak{s} \in \mathcal{A} \\ (1) \ \varphi_{\mathcal{A}} \ (\ constant \ 0 \) \ge \varphi_{\mathcal{A}} \ (\ k \) \\ (2) \ \varphi_{\mathcal{A}} \ (\ k^{\circ\circ} \) \\ & \ge \ \min\{ \varphi_{\mathcal{A}} \ (\ \mathfrak{s} \\ & \diamond \ k^{\circ\circ} \) , \ \varphi_{\mathcal{A}} \ (\ \mathfrak{s} \) \} \end{array}$

Proof:

By Definition (3.1) and Definition (2.11).

E-ideal and study its relationships with fuz. ideal in B.D KU-g .

$$(1) \varphi_{\mathcal{A}} (constant 0) \ge \varphi_{\mathcal{A}} (r)$$

$$(2) \varphi_{\mathcal{A}} (r) \ge min\{ \varphi_{\mathcal{A}} (s \land r), \varphi_{\mathcal{A}} (s) \}$$

Proposition (3.7) Let \mathcal{A} be c-ideal in B.D KU-g Y and $\{\varphi_{\mathcal{A}_i} : i \in \Delta\}$ be family of fuz. c-ideals, then $\bigcap_{i\in\Delta} \varphi_{\mathcal{A}_i}$ is fuz. c-ideal **Proof :** Let $\mathbf{r} \in Y$, $\mathbf{s} \in \mathcal{A}$, then (1) $\varphi_{\mathcal{A}_i}$ (constant 0) $\geq \varphi_{\mathcal{A}_i}$ (\mathbf{r}) inf $\{\varphi_{\mathcal{A}_i}$ (constant 0) $\} \geq$ inf $\{\varphi_{\mathcal{A}_i}$ (\mathbf{r}) $\}$. So $\bigcap_{i\in\Delta} \varphi_{\mathcal{A}_i}$ (constant 0) $\geq \bigcap_{i\in\Delta} \varphi_{\mathcal{A}_i}$ (\mathbf{r})

Remark (3.8) In B.D KU-g. Notice that union of two fuz. c-ideals does not necessary **Example (3.9)**

 $\begin{array}{ll} (2) \ \varphi_{\mathcal{A}_{i}}(\mathbf{r}) \geq & \min\{\varphi_{\mathcal{A}_{i}}(\mathbf{s} \circ \mathbf{r}), \varphi_{\mathcal{A}_{i}}(\mathbf{s})\}, \forall \mathbf{s} \in \mathcal{A} \\ \text{Thus} &, & \inf\{\varphi_{\mathcal{A}_{i}}(\mathbf{r})\} \geq \\ \inf\{\min\{\varphi_{\mathcal{A}_{i}}(\mathbf{s} \circ \mathbf{r}), \varphi_{\mathcal{A}_{i}}(\mathbf{s})\}\} \end{array}$

$$\geq \min\{\inf\{\varphi_{\mathcal{A}_{i}}(\mathfrak{s} \circ \mathfrak{r})\}, \inf\{\varphi_{\mathcal{A}_{i}}(\mathfrak{s})\}\}$$

So $\bigcap_{i\in\Delta}\varphi_{\mathcal{A}_{i}}(\mathfrak{r}) \geq \min\{\bigcap_{i\in\Delta}\varphi_{\mathcal{A}_{i}}(\mathfrak{s}\circ \mathfrak{r})\}, \forall \mathfrak{s}\in\mathcal{A}$
Then $\bigcap_{i\in\Delta}\varphi_{\mathcal{A}_{i}}(\mathfrak{s})\}, \forall \mathfrak{s}\in\mathcal{A}$.

fuz. c-ideal and the following example shows that .

Consider $Y = \{0, q, w, h, v, t\}$ and a binary operation \diamond is defined by :

<u> </u>	0	q	W	h	v	t
0	0	q	W	h	v	t
q	0	0	W	h	v	W
W	0	q	0	h	v	q
h	0	0	0	0	v	0
v	0	0	0	0	0	0
t	0	0	0	h	v	0

Then $(Y, \diamond, constant 0)$ is a B.D KU-g with unit v [7]. A subset $\mathcal{A} = \{0, q, w, t\}$ is cideal of Y. Define fuz. sets $\varphi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ from Y into [0,1] by :

 $\varphi_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.6 & \text{if } \mathbf{r} = 0, w, h, v \\ 0.3 & \text{if } \mathbf{r} = q, t \\ 0.7 & \text{if } \mathbf{r} = 0, q, h, v \\ 0.5 & \text{if } \mathbf{r} = w, t \end{cases} \text{ and }$

Then $\varphi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ are fuz. c-ideals .

Definition (3.10)

A fuz. subset φ in B.D KU-g Y is called fuz. E-ideal, if (1) φ (constant 0) $\geq \varphi$ (k) But

$$(\varphi_{\mathcal{A}} \cup \rho_{\mathcal{A}})(\mathbf{r}) = \begin{cases} 0.7 & if \ \mathbf{r} = 0, q, h, v \\ 0.6 & if \ \mathbf{r} = w \\ 0.5 & if \ \mathbf{r} = t \end{cases}$$

is not fuz. c-ideal, since
$$(\varphi_{\mathcal{A}} \cup \rho_{\mathcal{A}})(t) = 0.5$$
$$\geq \min\{(\varphi_{\mathcal{A}} \cup \rho_{\mathcal{A}})(w)\} = 0.6 \end{cases}$$
$$(2) \ \varphi(k^{\circ}) \geq \min\{\varphi(k \circ s^{\circ}), \varphi(s)\}, \text{ for all } k, s \in Y$$

Note that every fuz. constant in B.D KU-g Y
is fuz. E-ideal.

Example (3.11)

Consider $Y = \{0, q, d, h, v\}$ in which the operation \diamond is given by the table:

\$	0	q	d	h	v
0	0	q	d	h	v
q	0	0	d	h	h
d	0	q	0	h	v
h	0	0	0	0	q
v	0	0	0	0	0

Then $(Y, \diamond, constant 0)$ is a B.D KU-g with unit v [7].

If φ and ρ are two fuz. sets defined as : $\varphi(\mathbf{r}) = \begin{cases} 0.8 & if \ \mathbf{r} = 0, q, h, v \\ 0.6 & if \ \mathbf{r} = d \\ \rho(\mathbf{r}) = \begin{cases} 0.9 & if \ \mathbf{r} = 0, d, h, v \\ 0.7 & if \ \mathbf{r} = q \end{cases}$ Then φ is for Γ ideal in V

Then φ is fuz. E-ideal in Y.

Proposition (3.12) Every fuz. ideal in B.D KU-g is fuz. E-ideal Proof :

Let φ be fuz. ideal in B.D KU-g Y, then by Definition (2.21), we have : (1) φ (constant 0) $\geq \varphi$ (k)

Remark (3.13)

The converse of prop. (3.12) does not hold as in the example.

Example (3.14)

In example (3.11), φ is fuz. E-ideal of Y, but it's not fuz. ideal in Y, since

Proposition (3.15)

Every fuz. E-ideal in KU-involutory algebra Y is fuz. ideal . **Proof :** If φ be a fuz. E-ideal in Y, by Definition (3.10), we have :

(1) φ (constant 0) $\geq \varphi$ (r)

Proposition (3. 16)

If φ be a fuz. E-ideal of a B.D KU-g Y, then (1) $k \in Y$, $\varphi(k^{\circ}) \ge \varphi(e)$ (2) $k \in Y$, $\varphi(k^{\circ \circ}) \ge \varphi(k)$ **Proof :** (1) Since φ is fuz. E-ideal, then $\varphi(k^{\circ}) \ge min\{\varphi(k \circ e^{\circ}), \varphi(e)\}$

$$= \min\{\varphi(k)\}$$

 \diamond constant 0), $\varphi(e)$

While ρ is not fuz. E-ideal, since $\rho(h^\circ) = 0.7 \ge \min\{\rho(h \circ v^\circ), \rho(v)\} = 0.9$

(2) For all $k, s \in Y$, $\varphi(k) \ge \min\{\varphi(s \circ k), \varphi(s)\}$. Then $\varphi(k^\circ) \ge \min\{\varphi(s \circ k^\circ), \varphi(s)\}$ $= \min\{\varphi(k \circ s^\circ), \varphi(s)\}$, for all $k, s \in Y$ (By Prop. (2.5) (2)). Thus φ is fuz. E-ideal of Y.

 $\varphi(d) = 0.6 \ge \min\{\varphi(h \circ d), \varphi(h)\} = 0.8$

(2)
$$\varphi(\mathbf{r})$$
 equel to $\varphi(\mathbf{r}^{\circ\circ}) \ge \min\{\varphi(\mathbf{r}^{\circ} \circ \mathbf{s}^{\circ}), \varphi(\mathbf{s})\}$

$$= \min\{\varphi(\mathbf{s} \circ \mathbf{r}^{\circ\circ}), \varphi(\mathbf{s})\} (By Prop. (2.5) (2))$$

$$= \min\{\varphi(\mathbf{s} \circ \mathbf{r}), \varphi(\mathbf{s})\}, \text{ for all } \mathbf{r}, \mathbf{s} \in Y$$
(Since Y is a KU-involutory algebra).
Thus φ is a fuz. ideal of Y.
(3) For any $k, \mathbf{s} \in Y$, if $k^{\circ} \le \mathbf{s}$, then $\varphi(k^{\circ}) \ge \varphi(\mathbf{s})$.

 $= \min\{\varphi(constant 0), \varphi(e)\} \\ = \varphi(e), \forall k \in Y \\ (2) \text{ Since } \varphi \text{ is fuz. E-ideal, then for all } k \in Y \\$

 $\varphi(k) = \min\{\varphi(constant 0), \varphi(k)\} = \min\{\varphi(k^{\circ} \land k^{\circ}), \varphi(k)\} \le \varphi(k^{\circ\circ})$ (3) If $k^{\circ} \le s$ i.e $s \circ k^{\circ} = constant 0$, then

Proposition (3.17)

Let { $\varphi_{\alpha} : \alpha \in \Delta$ } be family of fuz. E-ideals in B.D KU-g *Y*, then $\bigcap_{\alpha \in \Delta} \varphi_{\alpha}$ is fuz. E-ideal of *Y*.

Proof:

(1) since $\varphi_{\alpha}(constant 0) \ge \varphi_{\alpha}(\mathbf{r})$, $\forall \alpha \in \Delta, \forall \mathbf{r} \in Y$, then $inf \{\varphi_{\alpha}(constant 0)\} \ge inf \{\varphi_{\alpha}(\mathbf{r})\}$. So $\bigcap_{\alpha \in \Delta} \varphi_{\alpha}(constant 0) \ge \bigcap_{\alpha \in \Delta} \varphi_{\alpha}(\mathbf{r})$ (2) let $\mathbf{r}, \mathbf{s} \in Y$, since $\varphi_{\alpha}(\mathbf{r}^{\circ}) \ge min\{\varphi_{\alpha}(\mathbf{r} \circ \mathbf{s}^{\circ}), \varphi_{\alpha}(\mathbf{s})\}$, then

$$\varphi (k^{\circ}) \geq \min\{\varphi (k \circ s^{\circ}), \varphi (s)\}, \text{ for}$$

any $k, s \in Y$ (since φ is fuz. E-ideal)
 $= \min\{\varphi (s \circ k^{\circ}), \varphi (s)\}$ (By
Prop. (2.5) (2))
 $= \min\{\varphi (constant 0), \varphi (s)\} = \varphi (s).$
$$\inf\{\varphi_{\alpha} (r^{\circ})\} \geq \inf\{\min\{\varphi_{\alpha} (r \circ s^{\circ}), \varphi_{\alpha} (s)\}\}$$

$$\geq \min \{ \inf \{ \varphi_{\alpha} (\mathbf{r} \\ \circ \mathfrak{s}^{\circ}) \}, \inf \{ \varphi_{\alpha} (\mathfrak{s}) \} \}$$

So $\bigcap_{\alpha \in \Delta} \varphi_{\alpha} (\mathfrak{r}^{\circ}) \geq \min \{ \bigcap_{\alpha \in \Delta} \varphi_{\alpha} (\mathfrak{r} \circ \mathfrak{s}) \}$
Hence $\bigcap_{\alpha \in \Delta} \varphi_{\alpha} (\mathfrak{s}) \}$

Remark (3.18)

Note that the union of two fuz. E-ideals does not necessarily fuz. E-ideal as in the following example.

Example (3.19)

In example (3.2), notice that :

$$\varphi(\mathbf{r}) = \begin{cases} 0.8 & if \ \mathbf{r} = 0.3 \\ 0.3 & if \ \mathbf{r} = 1,2,4 \\ \rho(\mathbf{r}) = \begin{cases} 0.7 & if \ \mathbf{r} = 0,1,2 \\ 0.4 & if \ \mathbf{r} = 3,4 \\ are \ fuz. \ E-ideals \ of \ Y. \end{cases}$$

Definition (3.20)

Let \mathcal{A} be c-E-ideal in B.D KU-g Y. The fuz. subset $\varphi_{\mathcal{A}}: Y \to [0,1]$ is called fuz. complete E-ideal (briefly, fuz. c-E-ideal) if,

Example (3.21)

In example (3.11), a subset $\mathcal{A} = \{0, q, d\}$ is c-E-ideal in Y.

Let $\varphi_{\mathcal{A}}$ and $\rho_{\mathcal{A}}$ are fuz. sets defined as the following :

 $\varphi_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.9 & \text{if } \mathbf{r} = 0, d, h \\ 0.6 & \text{if } \mathbf{r} = q, v \\ \text{and} & \rho_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.8 & \text{if } \mathbf{r} = 0, q, h \\ 0.5 & \text{if } \mathbf{r} = d, v \end{cases}$

But
$$(\varphi \cup \rho)(\mathbf{r}) = \begin{cases} 0.8 & \text{if } \mathbf{r} = 0.3 \\ 0.7 & \text{if } \mathbf{r} = 1.2 \\ 0.4 & \text{if } \mathbf{r} = 4 \end{cases}$$

is not fuz. E-ideal, since
 $(\varphi \cup \rho)(1^\circ) = 0.4$
 $\gtrless \min\{(\varphi \cup \rho)(1)$
 $\diamond 2^\circ), (\varphi \cup \rho)(2)\}$
 $= 0.7$
(1) $\forall k \in Y, \ \varphi_{\mathcal{A}} (constant 0)$
 $\ge \varphi_{\mathcal{A}} (k)$
(2) $\forall \mathfrak{s} \in \mathcal{A}, \ \varphi_{\mathcal{A}} (k^\circ)$
 $\ge \min\{\varphi_{\mathcal{A}} (k)$
 $\diamond \mathfrak{s}^\circ), \ \varphi_{\mathcal{A}} (\mathfrak{s})\}.$
Then $\varphi_{\mathcal{A}}$ is fuz. c-E-ideal in Y. While $\rho_{\mathcal{A}}$ is

Then $\varphi_{\mathcal{A}}$ is fuz. c-E-ideal in Y. While $\rho_{\mathcal{A}}$ is not fuz. c-E-ideal in Y, since

$$\rho_{\mathcal{A}} (0^{\circ}) = 0.5$$

$$\geq \min\{\rho_{\mathcal{A}} (0$$

$$\circ q^{\circ}), \rho_{\mathcal{A}} (q)\} = 0.8$$

Proposition (3.22)

Every fuz. E-ideal in B.D KU-g is fuz. c-E-ideal .

Proof:

Let \mathcal{A} be c-E-ideal in B.D KU-g Y and $\varphi_{\mathcal{A}}$ be fuz. E-ideal of Y, then by Definition (3.10), we have :

Remark (3.23)

The converse of prop. (3.22) be not true and the example shows that.

Example (3.24)

In example (3.21), $\varphi_{\mathcal{A}}$ is fuz. c-E-ideal in *Y*, but it's not fuz. E-ideal, since

Proposition (3.26)

Every fuz. c-ideal of B.D KU-g is a fuz. c-E-ideal .

Proof:

Let $\varphi_{\mathcal{A}}$ be fuz. c-ideal in B.D KU-g Y & \mathcal{A} is c-ideal of Y.

Then \mathcal{A} is c-E-ideal of *Y* (By Prop. (2.14)). Since $\varphi_{\mathcal{A}}$ is fuz. c-ideal of *Y*, from Definition (3.1), we have :

Remark (3.27)

In general, not every fuz. c-E-ideal is fuz. c-ideal and the following example shows that.

(1) $\varphi_{\mathcal{A}} (constant 0) \ge \varphi_{\mathcal{A}} (k)$ (2) $\varphi_{\mathcal{A}} (k^{\circ}) \ge min\{\varphi_{\mathcal{A}} (k \circ s^{\circ}), \varphi_{\mathcal{A}} (s)\}, \text{ for all } k, s \in Y.$ Since $\mathcal{A} \subseteq Y$, then $\varphi_{\mathcal{A}} (k^{\circ}) \ge min\{\varphi_{\mathcal{A}} (k \circ s^{\circ}), \varphi_{\mathcal{A}} (s)\}, \forall s \in \mathcal{A}$ Thus $\varphi_{\mathcal{A}}$ is fuz. c-E-ideal in Y.

$$\varphi_{\mathcal{A}}(h^{\circ}) = 0.6 \geq \min\{ \varphi_{\mathcal{A}}(h \circ h^{\circ}), \\ \varphi_{\mathcal{A}}(h) \} = 0.9$$

Corollary (3.25)

Every fuz. ideal in B.D KU-g is fuz. c-E-ideal.

Proof:

By Proposition (3.12) and Proposition (3.22).

(1) $\varphi_{\mathcal{A}}(\operatorname{constant} 0) \geq \varphi_{\mathcal{A}}(\mathfrak{r}), \forall \mathfrak{r} \in Y$ (2) $\forall \mathfrak{s} \in \mathcal{A}, \varphi_{\mathcal{A}}(\mathfrak{r}) \geq \min\{\varphi_{\mathcal{A}}(\mathfrak{s} \circ \mathfrak{r}), \varphi_{\mathcal{A}}(\mathfrak{s})\}$ Thus $\varphi_{\mathcal{A}}(\mathfrak{r}^{\circ}) \geq \min\{\varphi_{\mathcal{A}}(\mathfrak{s}), \varphi_{\mathcal{A}}(\mathfrak{s} \circ \mathfrak{r}), \mathfrak{r}^{\circ}\}$ $= \min\{\varphi_{\mathcal{A}}(\mathfrak{s}), \varphi_{\mathcal{A}}(\mathfrak{r} \circ \mathfrak{s}), \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{r}, \mathfrak{r}, \mathfrak{r} \circ \mathfrak{r}, \mathfrak{$

Example (3.28)

Consider $Y = \{0, q, d, h, v\}$ be set as shown in the following table:

\$	0	q	d	h	v
0	0	q	d	h	v
q	0	0	d	d	d
d	0	0	0	q	q
h	0	0	0	0	q
v	0	0	0	0	0

Then $(Y, \diamond, constant 0)$ is a B.D KU-g with unit v [7].

A subset $\mathcal{A} = \{0, q, h\}$ is c-E-ideal and c-ideal (in the same time) of a B.D KU-g Y. Define the fuz. set $\varphi_{\mathcal{A}} : Y \rightarrow [0,1]$ by :

$$\varphi_{\mathcal{A}}(\mathbf{r}) = \begin{cases} 0.8 & \text{if } \mathbf{r} = 0, q, d, v \\ 0.2 & \text{if } \mathbf{r} = h \end{cases}$$

Then $\varphi_{\mathcal{A}}$ is a fuz. c-E-ideal of Y. But $\varphi_{\mathcal{A}}$ is not fuz. c-ideal, since $\varphi_{\mathcal{A}}(h) = 0.2$

Proposition (3.29)

Every fuz. c-E-ideal in a KU-involutory algebra Y is fuz. c-ideal.

Proof :

Let $\varphi_{\mathcal{A}}$ be fuz. c-E-ideal in Y and \mathcal{A} is c-E-ideal of Y.

Then \mathcal{A} is c-ideal of Y (By Prop. (2.15)).

Since $\varphi_{\mathcal{A}}$ is fuz. c-E-ideal of *Y*, by Definition (3.20), we have :

(1)
$$\forall \mathbf{r} \in Y, \quad \varphi_{\mathcal{A}} (constant 0) \\ \geq \varphi_{\mathcal{A}} (\mathbf{r})$$

(2)
$$\forall s \in \mathcal{A}, \ \varphi_{\mathcal{A}}(r) = \varphi_{\mathcal{A}}(r^{\circ\circ})$$

 $\geq \min\{\varphi_{\mathcal{A}}(r^{\circ} \circ s^{\circ}), \varphi_{\mathcal{A}}(s)\}$
 $= \min\{\varphi_{\mathcal{A}}(s \circ r^{\circ\circ}), \varphi_{\mathcal{A}}(s)\}$ (By Prop.
(2.5) (2))
 $=$

 $\min\{ \varphi_{\mathcal{A}} (\mathfrak{s} \circ \mathfrak{r}), \varphi_{\mathcal{A}} (\mathfrak{s}) \}$ (Since Y is KU-involutory algebra). Thus $\varphi_{\mathcal{A}}$ is fuz. c-ideal of Y.

References

- Dudek W. A., On proper BCC-algebras, Bull. Inst. Math. Academia Sinica, 20(1992), 137-150.
- [2] Dudek W. A. and Jun Y. B., Fuzzy BCCideals in BCC-algebra , Math. Montisnigri , 10(1999) , 21-30.
- [3] Dudek W. A. and Jun Y. B., Normalizations of fuzzy BCC-ideals in BCC-algebras, Math Moravica, 3(1999) , 17-24.
- [4] Dudek W. A., Jun Y. B. and Hong S. M., On fuzzy topological BCC-algebras, Discussiones Math. (General Algebra and Applications), 20(2000), 77-86.
- [5] Dubois D. and Prade H., Fuzzy sets and Systems (Theory and Applications), Academic Press. INC. (London) LTD., Academic Press. INC. fifth Avenue, New York, (1980).
- [6] Dudek W. A. and Zhang X., On ideals
- and congurences in BCC-algebras , Czechoslovak math journal, 48(1998) , no. 123 , 12-29.
- [7] Jawad H. K. and AL-Shaher O. I., New Types of Ideals in KU-algebra , To Appear.
- [8] Mostafa S. M., Abd-Elnaby M. A. and Yousef M. M. M., Fuzzy ideals of KU-Algebras, Int. Math. Forum, 6(2011), no. 63, 3139-3149.
- [9] Mostafa S. M. and Kareem F. F., Fuzzy n-fold KU-ideals of KU-algebras, Annals of Fuzzy Math. Inform, 6(2014), no. 8, 987-1000.
- [10] Prabpayak C. and Leerawat U., On ideals and congurences in KU-algebras, scientia magna journal, 5(2009), no. 1, 54-57.
- [11] Prabpayak C. and Leerawat U., On isomorphisms of KU-algebras, scientia magna journal, 5(2009), no. 3, 25-31.
- [12] Radwan A. E., Mostafa S. M., Ibrahem F. A. and Kareem F. F., Topology spectrum of a KU-algebra, Journal of New Theory, 5(2015), no. 8, 78-91.
- [13] Zadeh L. A., Fuzzy sets, Inform, and Control. 8(1965), 338-353.