This is an outdated version published on 2021-12-29. Read the most recent version.

Application of Nano-particulate drug delivery systems to deliver therapeutic agents into cancer cells


  • Narjes Alfuraiji
  • Weam Kadhim Department of Biochemistry, College of Medicine, University of Kerbala, Kerbala, Iraq.
  • Rana Hameed Department of Biochemistry, College of Medicine, University of Kerbala, Kerbala, Iraq.
  • Qasim Chyad Abdulzahra Faculty of Chemistry, University of Mazandaran, Mazandaran, Iran, Al-Qasim Secondary School, Babylon, Iraq.


Cancer, Nanoparticles, targeted therapy



Cancer is a disorder in which a group of cells grows uncontrollably, disregarding the cell division's physiological rules. Since its discovery (although the word cancer was not used)3000 BC, extraordinary research aims to uncover novel treatment approaches for combating cancer. Currently, over 60% of all ongoing clinical trials worldwide focus on cancer. The selection of treatment depends on the type of cancer, site, and stage of progression. Surgery, radiation-based surgical knives, chemotherapy, and radiotherapy are traditional treatment approaches that are mostly used. Side effects associated with conventional therapy highlight the need for novel cancer treatment. 

Nanotechnology has been widely investigated and utilized for cancer therapy, as nanoparticles play a key role in medication delivery. Nanoparticle-based drug delivery provides several advantages over traditional drug delivery, including better stability and biocompatibility, increased permeability and retention effect, and precision targeting. It has also been proven to tackle the resistance to anticancer drugs by targeting the underlying mechanism such as overexpression of drug efflux transporters, defective apoptotic pathways, and a hypoxic environment, leading to enhance multidrug resistance reversal. Moreover, nanoparticles' role in immunotherapy is undergoing investigation due to their essential role in cancer treatment. This review highlights the role of nanoparticles for drug delivery in chemotherapy, targeted therapy, and the targeting mechanism of nanoparticle-based drug delivery.


Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30. DOI: 10.3322/caac.21590.

Bhosle, J., & Hall, G. Principles of cancer treatment by chemotherapy.

Surgery (Oxford), 2009, 27.4: 173-177.‏

Zitvogel, L., Apetoh, L., Ghiringhelli, F., and Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73. DOI: 10.1038/nri2216.

Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S. N., Hidalgo, O. F., Vanaclocha, V., ... & Herman, J. G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New England Journal of Medicine, 2000, 343.19: 1350-1354.‏

Jensen, S. B., Jarvis, V., Zadik, Y., Barasch, A., Ariyawardana, A., Hovan, A., ... & Elad, S. Systematic review of miscellaneous agents for the management of oral mucositis in cancer patients. Supportive Care in Cancer, 2013, 21.11: 3223-3232.‏

- Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet, 2005, 365.9472: 1687-1717.‏

- Picot, J., Cooper, K., Bryant, J., & Clegg, A. J. The clinical effectiveness and cost-effectiveness of bortezomib and thalidomide in combination regimens with an alkylating agent and a corticosteroid for the first-line treatment of multiple myeloma: a systematic review and economic evaluation. Health technology assessment (Winchester, England), 2011, 15.41: 1.‏

- El-Kenawi, A. E., & El-Remessy, A. B. (2013). Angiogenesis inhibitors in cancer therapy: a mechanistic perspective on classification and treatment rationales. British journal of pharmacology, 170(4), 712–729.

- Wu, H. C., Chang, D. K., & Huang, C. T. Targeted therapy for cancer. J Cancer Mol, 2006, 2.2: 57-66.‏

- Dorai, T., & Aggarwal, B. B. Role of chemopreventive agents in cancer therapy. Cancer letters, 2004, 215.2: 129-140.‏

- Lloyd-Parry, O., Downing, C., Aleisaei, E., Jones, C., & Coward, K. Nanomedicine applications in women's health: state of the art. International journal of nanomedicine, 2018, 13: 1963.‏

- Emerich, D. F. Nanomedicine–prospective therapeutic and diagnostic applications. Expert opinion on biological therapy, 2005, 5.1: 1-5.‏

- Albanese, A., Tang, P. S., & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual review of biomedical engineering, 2012, 14: 1-16.

- Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. Cancer nanomedicine: progress, challenges, and opportunities. Nature reviews cancer, 2017, 17.1: 20.‏

- Lungu, I. I., Grumezescu, A. M., Volceanov, A., & Andronescu, E. Nano biomaterials used in cancer therapy: An up-to-date overview. Molecules, 2019, 24.19: 3547.‏

- Dadwal, A., Baldi, A., and Kumar Narang, R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 46, 295–305. DOI: 10.1080/21691401.2018.1457039.

- Palazzolo, S., Bayda, S., Hadla, M., Caligiuri, I., Corona, G., Toffoli, G., et al. (2018). The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem. 25, 4224–4268. doi: 10.2174/0929867324666170830113755.

- Chen, Y., Gao, D. Y., and Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141. doi: 10.1016/j.addr.2014.05.009

-Davis, M. E., Zuckerman, J. E., Choi, C. H., Seligson, D., Tolcher, A., Alabi, C. A., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070. doi: 10.1038/nature08956.

-Riley, R. S., and Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9:e1449. doi: 10.1002/wnan.1449

- Yoon, H. Y., Selvan, S. T., Yang, Y., Kim, M. J., Yi, D. K., Kwon, I. C., et al. (2018). Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials 178, 597–607. doi: 10.1016/j.biomaterials.2018.03.036

- Zang, X., Zhao, X., Hu, H., Qiao, M., Deng, Y., and Chen, D. (2017). Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm. 115, 243–256. doi: 10.1016/j.ejpb.2017.03.013.

- Li, W., Zhang, H., Assaraf, Y. G., Zhao, K., Xu, X., Xie, J., et al. (2016). Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat. 27, 14–29. doi: 10.1016/j.drup.2016.05.001.

-Wang, H., Agarwal, P., Zhao, G., Ji, G., Jewell, C. M., Fisher, J. P., et al. (2018b). Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Cent. Sci. 4, 567–581. doi: 10.1021/acscentsci.8b00050.

- Alimoradi, H., Greish, K., Barzegar-Fallah, A., Alshaibani, L., and Pittalà, V. (2018). Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. Int. J. Nanomed. 13, 7771–7787. doi: 10.2147/ijn.s187089.

- Zhang, J., Wang, L., You, X., Xian, T., Wu, J., and Pang, J. (2019). Nanoparticle therapy for prostate cancer: overview and perspectives. Curr. Top. Med. Chem. 19, 57–73. doi: 10.2174/1568026619666190125145836

- Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122. doi: 10.1016/j.ijpharm.2004.07.019.

- Zhang, L., Chan, J. M., Gu, F. X., Rhee, J. W., Wang, A. Z., Radovic-Moreno, A. F., et al. (2008). Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702. doi: 10.1021/nn800275r.

- Bertrand, N., Wu, J., Xu, X., Kamaly, N., and Farokhzad, O. C. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25. doi: 10.1016/j.addr.2013.11.009

- Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., and Tekade, R. K. (2019). Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 1252–1276. doi: 10.1016/j.msec.2019.01.066.

-Bae, K. H., Chung, H. J., & Park, T. G. Nanomaterials for cancer therapy and imaging. Molecules and cells, 2011, 31.4: 295-302.‏

- Faisal, N., & Kumar, K. Polymer and metal nanocomposites in biomedical applications. Biointerface Research in Applied Chemistry, 2017, 7.6: 2286-2294.‏

-Teleanu, D. M., Chircov, C., Grumezescu, A. M., & Teleanu, R. I. Neuronanomedicine: An up-to-date overview. Pharmaceutics, 2019, 11.3: 101.‏

- Raju, G. S. R., Benton, L., Pavitra, E., & Yu, J. S. Multifunctional nanoparticles: recent progress in cancer therapeutics. Chemical Communications, 2015, 51.68: 13248-13259.‏

- O’Brien, M. E., Wigler, N., Inbar, M., Rosso, R., Grischke, E., Santoro, A., et al. (2004). Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15, 440–449. doi: 10.1093/annonc/mdh097.

-Cortes, J., and Saura, C. (2010). Nanoparticle albumin-bound (nab (TM))-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. EJC Suppl. 8, 1–10. doi: 10.1016/s1359-6349(10)70002-1.

- Hrkach, J., Von Hoff, D., Mukkaram Ali, M., Andrianova, E., Auer, J., Campbell, T., et al. (2012). Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4:128ra139. doi: 10.1126/scitranslmed.3003651.

- Mottaghitalab, F., Farokhi, M., Fatahi, Y., Atyabi, F., and Dinarvand, R. (2019). New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J. Control Release 295, 250–267. doi: 10.1016/j.jconrel.2019.01.009.

- Zhou, Q., Zhang, L., Yang, T., & Wu, H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International journal of nanomedicine, 2018, 13: 2921.‏

-Iurie, R. Cell drug delivery of fluorescein loaded ApoB100 functionalized liposomes. Biointerface Research in Applied Chemistry, 2015, 5.6.‏

- Bahramian, G., Golestan, L., & Khosravi-Darani, K. Antimicrobial and antioxidant effect of nanoliposomes containing zataria multiflora boiss essential oil on the rainbow trout fillets during refrigeration. Biointerface Research in Applied Chemistry, 2018, 8.5: 3505-3513.‏

- Olusanya, T. O., Haj Ahmad, R. R., Ibegbu, D. M., Smith, J. R., & Elkordy, A. A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23.4: 907.‏

-Heba F. Salem, Rasha M. Kharshoum, Mohamed Mahmoud, Saleh A. Azim, EL-Zeiny M. Ebeid. Development and characterization of a novel nano-liposomal formulation of Alendronate Sodium loaded with biodegradable polymer. Ars Pharm. 2018; 59(1): 9-20.

- Alexis, F., Pridgen, E. M., Langer, R., & Farokhzad, O. C. Nanoparticle technologies for cancer therapy. Drug delivery, 2010, 55-86.‏

-Parveen, S., & Sahoo, S. K. Polymeric nanoparticles for cancer therapy. Journal of drug targeting, 2008, 16.2: 108-123.‏

-Vilos, C., Morales, F. A., Solar, P. A., Herrera, N. S., Gonzalez-Nilo, F. D., Aguayo, D. A., ... & Velasquez, L. A. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials, 2013, 34.16: 4098-4108.‏

- Liang, C., Yang, Y., Ling, Y., Huang, Y., Li, T., & Li, X. Improved therapeutic effect of folate-decorated PLGA–PEG nanoparticles for endometrial carcinoma. Bioorganic & medicinal chemistry, 2011, 19.13: 4057-4066.‏

- Zhang, C., Zhao, L., Dong, Y., Zhang, X., Lin, J., & Chen, Z. Folate-mediated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76.1: 10-16.‏

- Chittasupho, C., Xie, S. X., Baoum, A., Yakovleva, T., Siahaan, T. J., & Berkland, C. J. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. European journal of pharmaceutical sciences, 2009, 37.2: 141-150.‏

- Shah, M., Ullah, N., Choi, M. H., Kim, M. O., & Yoon, S. C. Amorphous amphiphilic P (3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80.3: 518-527.‏

- Dhar, S., Gu, F. X., Langer, R., Farokhzad, O. C., & Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proceedings of the National Academy of Sciences, 2008, 105.45: 17356-17361.‏

- Jiang, Y., Huo, S., Hardie, J., Liang, X. J., and Rotello, V. M. (2016). Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert. Opin. Drug Deliv. 13, 547–559. doi: 10.1517/17425247.2016.1134486.

- Han, G., Ghosh, P., and Rotello, V. M. (2007). Functionalized gold nanoparticles for drug delivery. Nanomedicine 2, 113–123. doi: 10.2217/17435889.2.1.113.

- Cheng, J., Gu, Y. J., Cheng, S. H., and Wong, W. T. (2013). Surface functionalized gold nanoparticles for drug delivery. J. Biomed. Nanotechnol. 9, 1362–1369. doi: 10.1166/jbn.2013.1536.

- Abadeer, N. S., & Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 2016, 120.9: 4691-4716.

- Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Molecular pharmaceutics, 2018, 16.1: 1-23.‏‏

-Yugo Kato, Etsuro Yoshimura, and Michio Suzuki : Synthesis of Gold Nanoparticles by Extracellular Components of Lactobacillus casei. ChemistrySelect , 2019, 4, 7331 –7337.

-Xue Bai , Yueying Wang , Zhiyun Song , Yanmin Feng , Yuanyuan Chen , Deyuan Zhang and Lin Feng : The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment,Int. J. Mol. Sci. 2020, 21, 2480; doi:10.3390/ijms21072480.

-Madani, S. Y., Naderi, N., Dissanayake, O., Tan, A., and Seifalian, A. M. (2011). A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomed. 6, 2963–2979. doi: 10.2147/ijn.s16923

- Luo, E., Song, G., Li, Y., Shi, P., Hu, J., and Lin, Y. (2013). The toxicity and pharmacokinetics of carbon nanotubes as an effective drug carrier. Curr. Drug Metab. 14, 879–890. doi: 10.2174/138920021131400110

- Almeida, P. V., Shahbazi, M. A., Mäkilä, E., Kaasalainen, M., Salonen, J., Hirvonen, J., et al. (2014). Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 6, 10377–10387. doi: 10.1039/c4nr02187h

- Gao, F., Wu, J., Niu, S., Sun, T., Li, F., Bai, Y., et al. (2019). Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics 9, 6002–6018. doi: 10.7150/thno.36135

- Cheng, C. A., Deng, T., Lin, F. C., Cai, Y., and Zink, J. I. (2019). Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Theranostics 9, 3341–3364. doi: 10.7150/thno.34576

- Lei, W., Sun, C., Jiang, T., Gao, Y., Yang, Y., Zhao, Q., et al. (2019). Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 105:110103. doi: 10.1016/j.msec.2019.110103

- Zhang, F., Correia, A., Mäkilä, E., Li, W., Salonen, J., Hirvonen, J. J., et al. (2017). Receptor-mediated surface charge inversion platform based on porous silicon nanoparticles for efficient cancer cell recognition and combination therapy. ACS Appl. Mater. Interfaces 9, 10034–10046. doi: 10.1021/acsami.7b02196

- Xu, C., Lei, C., and Yu, C. (2019). Mesoporous silica nanoparticles for protein protection and delivery. Front. Chem. 7:290. doi: 10.3389/fchem.2019.00290.

- Fontana, F., Shahbazi, M. A., Liu, D., Zhang, H., Mäkilä, E., Salonen, J., et al. (2017b). Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Adv. Mater. 29:1603239. doi: 10.1002/adma.201603239.

- Basoglu, H., Goncu, B., and Akbas, F. (2018). Magnetic nanoparticle-mediated gene therapy to induce Fas apoptosis pathway in breast cancer. Cancer Gene Ther 25, 141–147. doi: 10.1038/s41417-018-0017-2

-Mandriota, G., Di Corato, R., Benedetti, M., De Castro, F., Fanizzi, F. P., and Rinaldi, R. (2019). Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Appl. Mater. Interfaces 11, 1864–1875. doi: 10.1021/acsami.8b18717.

- Hoopes, P. J., Moodie, K. L., Petryk, A. A., Petryk, J. D., Sechrist, S., Gladstone, D. J., et al. (2017). Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer. Proc. SPIE Int. Soc. Opt. Eng. 10066:1006605. doi: 10.1117/12.2256213

-Legge, C. J., Colley, H. E., Lawson, M. A., and Rawlings, A. E. (2019). Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J. Oral Pathol. Med. 48, 803–809. doi: 10.1111/jop.12921.

- Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., et al. (2015). Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46, 13–25. doi: 10.1016/j.biomaterials.2014.12.028.

- Li, Y., Xiao, Y., Lin, H. P., Reichel, D., Bae, Y., Lee, E. Y., et al. (2019). In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials 188, 160–172. doi: 10.1016/j.biomaterials.2018.10.019.

- Wang, Q., Alshaker, H., Böhler, T., Srivats, S., Chao, Y., Cooper, C., et al. (2017). Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci. Rep. 7:5901. doi: 10.1038/s41598-017-06142-x

- Su, X., Wang, Z., Li, L., Zheng, M., Zheng, C., Gong, P., et al. (2013). Lipid-polymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol. Pharm. 10, 1901–1909. doi: 10.1021/mp300675c.

- Hu, Y., Hoerle, R., Ehrich, M., and Zhang, C. (2015). Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater. 28, 149–159. doi: 10.1016/j.actbio.2015.09.032.

- Colapicchioni, V., Palchetti, S., Pozzi, D., Marini, E. S., Riccioli, A., Ziparo, E., et al. (2015). Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome-silica hybrid nanoparticles. J. Mater. Chem. B 3, 7408–7416. doi: 10.1039/c5tb01383f

- Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., et al. (2015). Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540–3557. doi: 10.1021/acsnano.5b00510.

- Kong, F., Zhang, X., Zhang, H. B., Qu, X. M., Chen, D., Servos, M., et al. (2015). Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Adv. Funct. Mater. 25, 3330–3340. doi: 10.1002/adfm.201500594.

- Cirillo, G., Vittorio, O., Kunhardt, D., Valli, E., Voli, F., Farfalla, A., et al. (2019). Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. Materials 12:2889. doi: 10.3390/ma12182889.

- Park, H., Yang, J., Lee, J., Haam, S., Choi, I. H., and Yoo, K. H. (2009). Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3, 2919–2926. doi: 10.1021/nn900215k.

-Parodi, A., Quattrocchi, N., van de Ven, A. L., Chiappini, C., Evangelopoulos, M., Martinez, J. O., et al. (2013). Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8, 61–68. doi: 10.1038/nnano.2012.212.

- Fang, R. H., Kroll, A. V., Gao, W., and Zhang, L. (2018). Cell Membrane Coating Nanotechnology. Adv. Mater. 30:e1706759. doi: 10.1002/adma.201706759

- Liu, C. M., Chen, G. B., Chen, H. H., Zhang, J. B., Li, H. Z., Sheng, M. X., et al. (2019). Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf. B Biointerfaces 175, 477–486. doi: 10.1016/j.colsurfb.2018.12.038.

- Dehaini, D., Wei, X., Fang, R. H., Masson, S., Angsantikul, P., Luk, B. T., et al. (2017). Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29:1606209. doi: 10.1002/adma.201606209.

-Wang, D., Dong, H., Li, M., Cao, Y., Yang, F., Zhang, K., et al. (2018a). Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano 12, 5241–5252. doi: 10.1021/acsnano.7b08355

- Jiang, Q., Liu, Y., Guo, R., Yao, X., Sung, S., Pang, Z., et al. (2019). Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192, 292–308. doi: 10.1016/j.biomaterials.2018.11.021

- Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V. P., Jiang, W., et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U.S.A. 108, 2426–2431. doi: 10.1073/pnas.1018382108.

- Zhang, J., Li, Z., Qi, X. L., & Wang, D. Y. Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials. Nano-Micro Letters, 2020, 12.1: 1-21.‏

- Cao, X., Tan, C., Sindoro, M., & Zhang, H. Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews, 2017, 46.10: 2660-2677.‏

- Zulys, A., Yulia, F., Buhori, A., Muhadzib, N., Ghiyats, M., & Saha, B. B. Synthesis and characterization of a novel microporous lanthanide based metal-organic framework (MOF) using napthalenedicarboxylate acid. Journal of Materials Research and Technology, 2020, 9.4: 7409-7417.‏

- Nasruddin, N., Yulia, F., Zulys, A., & Ruliandini, R. Metal-organic framework based chromium terephthalate (MIL-101 Cr) growth for carbon dioxide capture: A review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 57.2: 158-174.‏

- Zhang, J., Li, Z., Qi, X., Zhang, W., & Wang, D. Y. Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Composites Part B: Engineering, 2020, 188: 107881.‏

- Butova, V. V. E., Soldatov, M. A., Guda, A. A., Lomachenko, K. A., & Lamberti, C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85.3: 280.‏

- Asiri, A. M., & Mohammad, A. (Eds.). (ed.). Applications of nanocomposite materials in drug delivery. Woodhead Publishing, 2018.‏

- Cai, W., Wang, J., Chu, C., Chen, W., Wu, C., & Liu, G. Metal–organic framework‐based stimuli‐responsive systems for drug delivery. Advanced Science, 2019, 6.1: 1801526.‏

- Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., ... & Serre, C. Metal–organic frameworks in biomedicine. Chemical reviews, 2012, 112.2: 1232-1268.

- Bennett, T. D., & Cheetham, A. K. Amorphous metal–organic frameworks. Accounts of chemical research, 2014, 47.5: 1555-1562.

- Mehta, J., Bhardwaj, N., Bhardwaj, S. K., Kim, K. H., & Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coordination Chemistry Reviews, 2016, 322: 30-40.‏‏ ‏

-Rösler, C., & Fischer, R. A. Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 2015, 17.2: 199-217.‏

- Xue, Z., Zhu, M., Dong, Y., Feng, T., Chen, Z., Feng, Y., ... & Meng, S. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. Nanoscale, 2019, 11.24: 11709-11718.‏

- Zhang, L., Wang, Z., Zhang, Y., Cao, F., Dong, K., Ren, J., & Qu, X. Erythrocyte membrane cloaked metal–organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS nano, 2018, 12.10: 10201-10211.‏

- Deng, J., Wang, K., Wang, M., Yu, P., & Mao, L. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. Journal of the American Chemical Society, 2017, 139.16: 5877-5882.‏

- Meng, Q., Meng, J., Ran, W., Wang, J., Zhai, Y., Zhang, P., & Li, Y. Light-activated core–shell nanoparticles for spatiotemporally specific treatment of metastatic triple-negative breast cancer. ACS nano, 2018, 12.3: 2789-2802.‏

- Jain, R. K. (1994). Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65. doi: 10.1038/scientificamerican0794-58

- Carmeliet, P., and Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257. doi: 10.1038/35025220

- Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207. doi: 10.1016/s0065-2571(00)00013-3.

- Sykes, E. A., Chen, J., Zheng, G., and Chan, W. C. (2014). Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706. doi: 10.1021/nn500299p

- Carita, A. C., Eloy, J. O., Chorilli, M., Lee, R. J., and Leonardi, G. R. (2018). Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr. Med. Chem. 25, 606–635. doi: 10.2174/0929867324666171009120154

-Pelicano, H., Martin, D. S., Xu, R. H., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646. doi: 10.1038/sj.onc.1209597

-Lim, E. K., Chung, B. H., and Chung, S. J. (2018). Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets 19, 300–317. doi: 10.2174/1389450117666160602202339

- Shi, J., Xiao, Z., Kamaly, N., and Farokhzad, O. C. (2011). Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. ACC Chem. Res. 44, 1123–1134. doi: 10.1021/ar200054n.

- Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., and Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010. doi: 10.1039/c2cs15344k

- Farokhzad, O. C., and Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20. doi: 10.1021/nn900002m.

- Danhier, F., Feron, O., and Préat, V. (2010). To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anticancer drug delivery. J. Control Release 148, 135–146. doi: 10.1016/j.jconrel.2010.08.027

- Amreddy, N., Muralidharan, R., Babu, A., Mehta, M., Johnson, E. V., Zhao, Y. D., et al. (2015). Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int. J. Nanomed. 10, 6773–6788. doi: 10.2147/ijn.s93237.

-Liu, L., Wei, Y., Zhai, S., Chen, Q., and Xing, D. (2015). Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 62, 35–46. doi: 10.1016/j.biomaterials.2015.05.036.

- Santi, M., Maccari, G., Mereghetti, P., Voliani, V., Rocchiccioli, S., Ucciferri, N., et al. (2017). Rational Design of a Transferrin-Binding Peptide Sequence Tailored to Targeted Nanoparticle Internalization. Bioconjug. Chem. 28, 471–480. doi: 10.1021/acs.bioconjchem.6b00611

- Cui, Y. N., Xu, Q. X., Davoodi, P., Wang, D. P., and Wang, C. H. (2017). Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol. Sin. 38, 943–953. doi: 10.1038/aps.2017.45.

- Soe, Z. C., Kwon, J. B., Thapa, R. K., Ou, W., Nguyen, H. T., Gautam, M., et al. (2019). Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in Doxorubicin-resistant breast cancer cells. Pharmaceutics 11:63. doi: 10.3390/pharmaceutics11020063.

- Low, P. S., and Kularatne, S. A. (2009). Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 13, 256–262. doi: 10.1016/j.cbpa.2009.03.022.

- Muralidharan, R., Babu, A., Amreddy, N., Basalingappa, K., Mehta, M., Chen, A., et al. (2016). Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J. Nanobiotechnol. 14:47. doi: 10.1186/s12951-016-0201-1.

- Samadian, H., Hosseini-Nami, S., Kamrava, S. K., Ghaznavi, H., and Shakeri-Zadeh, A. (2016). Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol. 142, 2217–2229. doi: 10.1007/s00432-016-2179-3.

- Minko, T. (2004). Drug targeting to the colon with lectins and neoglycoconjugates. Adv. Drug Deliv. Rev. 56, 491–509. doi: 10.1016/j.addr.2003.10.017

- Obaid, G., Chambrier, I., Cook, M. J., and Russell, D. A. (2015). Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci. 14, 737–747. doi: 10.1039/c4pp00312h.

- Nicholson, R. I., Gee, J. M., and Harper, M. E. (2001). EGFR and cancer prognosis. Eur. J. Cancer 37(Suppl. 4), S9–S15. doi: 10.1016/s0959-8049(01)00231-3.

- Sigismund, S., Avanzato, D., and Lanzetti, L. (2018). Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20. doi: 10.1002/1878-0261.12155.

- Alexis, F., Basto, P., Levy-Nissenbaum, E., Radovic-Moreno, A. F., Zhang, L., Pridgen, E., et al. (2008). HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3, 1839–1843. doi: 10.1002/cmdc.200800122.

- Balasubramanian, S., Girija, A. R., Nagaoka, Y., Iwai, S., Suzuki, M., Kizhikkilot, V., et al. (2014). Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int. J. Nanomed. 9, 437–459. doi: 10.2147/ijn.s49882.

- Orleth, A., Mamot, C., Rochlitz, C., Ritschard, R., Alitalo, K., Christofori, G., et al. (2016). Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J. Drug Target 24, 80–89. doi: 10.3109/1061186x.2015.1056189

-Apte, R. S., Chen, D. S., and Ferrara, N. (2019). VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264. doi: 10.1016/j.cell.2019.01.021

- Nisato, R. E., Tille, J. C., Jonczyk, A., Goodman, S. L., and Pepper, M. S. (2003). alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6, 105–119. doi: 10.1023/B:AGEN.0000011801.98187.f2

- Desgrosellier, J. S., and Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22. doi: 10.1038/nrc2748

- Hood, J. D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R. A., Xiang, R., et al. (2002). Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407. doi: 10.1126/science.1070200.

- Ruoslahti, E. (2002). Specialization of tumour vasculature. Nat. Rev. Cancer 2, 83–90. doi: 10.1038/nrc724.

- Dienst, A., Grunow, A., Unruh, M., Rabausch, B., Nör, J. E., Fries, J. W., et al. (2005). Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J. Natl. Cancer Inst. 97, 733–747. doi: 10.1093/jnci/dji130.

- Pan, H., Myerson, J. W., Hu, L., Marsh, J. N., Hou, K., Scott, M. J., et al. (2013). Programmable nanoparticle functionalization for in vivo targeting. FASEB J. 27, 255–264. doi: 10.1096/fj.12-218081.

- Lia, N. G., Shib, Z. H., Tang, Y. P., and Duan, J. A. (2009). Selective matrix metalloproteinase inhibitors for cancer. Curr. Med. Chem. 16, 3805–3827. doi: 10.2174/092986709789178037.

-Xiao, Q., Zhu, X., Yuan, Y., Yin, L., and He, W. (2018). A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. Nanomedicine 14, 2678–2688. doi: 10.1016/j.nano.2018.06.012.

-Cun, X., Chen, J., Li, M., He, X., Tang, X., Guo, R., et al. (2019). Tumor-Associated Fibroblast-Targeted Regulation and Deep Tumor Delivery of Chemotherapeutic Drugs with a Multifunctional Size-Switchable Nanoparticle. ACS Appl. Mater. Interfaces 11, 39545–39559. doi: 10.1021/acsami.9b13957.

- Forouzanfar, M. H., Foreman, K. J., Delossantos, A. M., Lozano, R., Lopez, A. D., Murray, C. J., & Naghavi, M. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. The lancet, 2011, 378.9801: 1461-1484.‏

- Israili, Z. H., & Dayton, P. G. Human alpha-1-glycoprotein and its interactions with drugs. Drug metabolism reviews, 2001, 33.2: 161-235.‏

- Duché, J. C., Urien, S., Simon, N., Malaurie, E., Monnet, I., & Barré, J. Expression of the genetic variants of human alpha-1-acid glycoprotein in cancer. Clinical biochemistry, 2000, 33.3: 197-202.‏

- Picot, J., Cooper, K., Bryant, J., & Clegg, A. J. The clinical effectiveness and cost-effectiveness of bortezomib and thalidomide in combination regimens with an alkylating agent and a corticosteroid for the first-line treatment of multiple myeloma: a systematic review and economic evaluation. Health technology assessment (Winchester, England), 2011, 15.41: 1.‏

- Robison, L., Zhang, L., Drout, R. J., Li, P., Haney, C. R., Brikha, A., ... & Farha, O. K. A bismuth metal–organic framework as a contrast agent for X-ray computed tomography. ACS Applied Bio Materials, 2019, 2.3: 1197-1203.‏

-Salgaonkar, M., Nadar, S. S., & Rathod, V. K. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. International journal of biological macromolecules, 2018, 113: 464-475.‏

-Liang, C. C., Shi, Z. L., He, C. T., Tan, J., Zhou, H. D., Zhou, H. L., ... & Zhang, Y. B. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal–organic frameworks. Journal of the American Chemical Society, 2017, 139.38: 13300-13303.‏

- Qu, F., Li, X., Lv, X., You, J., & Han, W. Highly selective metal–organic framework-based sensor for protamine through photoinduced electron transfer. Journal of Materials Science, 2019, 54.4: 3144-3155.‏

- Qin, J., Cho, M., & Lee, Y. Ferrocene-encapsulated Zn zeolitic imidazole framework (ZIF-8) for optical and electrochemical sensing of amyloid-β oligomers and for the early diagnosis of alzheimer's disease. ACS applied materials & interfaces, 2019, 11.12: 11743-11748.‏

- Belmabkhout, Y., Bhatt, P. M., Adil, K., Pillai, R. S., Cadiau, A., Shkurenko, A., ... & Eddaoudi, M. Natural gas upgrading using a fluorinated MOF with tuned H 2 S and CO 2 adsorption selectivity. Nature Energy, 2018, 3.12: 1059-1066.‏

- Sun, Y., Zheng, L., Yang, Y., Qian, X., Fu, T., Li, X., ... & Tan, W. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Letters, 2020, 12.1: 1-29.

- Zhao, H., Hou, S., Zhao, X., & Liu, D. Adsorption and pH-responsive release of tinidazole on metal–organic framework CAU-1. Journal of Chemical & Engineering Data, 2019, 64.4: 1851-1858.‏‏




How to Cite

Alfuraiji, N., Kadhim, W. ., Hameed, R., & Chyad Abdulzahra, Q. . (2021). Application of Nano-particulate drug delivery systems to deliver therapeutic agents into cancer cells. Karbala Journal of Medicine, 14(2), 2496–2512. Retrieved from