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A B S T R A C T  
 

 

An iterative semi-analytical transform approach is suggested in this paper for solving a 

time-fractional Fokker-Planck (FrF-P) partial differential equations. The Kashuri-Fundo transform and 
the variational iteration method are the key components of the suggested method. The fractional 

derivative is taken in the Caputo sense.  The solution is given as a rapidly converging fractional power 

series with simple coefficients. Some illustrative examples are solved to show how practical and 
effective the proposed approach is. 

 

 

 
1. INTRODUCTION1 

Partial differential equations (PDEs) are 

frequently utilized to expressing engineering and natural 

activities in the various fields of physics, chemistry, 

biology and applied mathematics. A variety of nonlinear 

partial differential equations (NLPDEs) have been the 

focus of important studies by physicists, 

mathematicians, and scientists in the past decades. 

Finding the solution to partial NLDEs is challenging 

because to their nonlinear components. Although 

obtaining approximate or exact solutions to nonlinear 

partial differential equations (NLPDEs) is essential in 

many study areas, it remains a difficult task that require 

the development of new methodologies. In order to get 

an analytical solution, dependable and effective 

approaches must be developed [1]. The exact solution of 

these DEs is significant since many practical sciences, 

including quantum mechanics, hydrodynamics, plasma 

physics, and nonlinear optics, depend on the ability of 

predicting the future behavior of a dynamic system. 

In recent years, fractional calculus, which is seen as a 

generalization of standard integer-order integration and 

differentiation, has received a lot of attention due to the 

wide range of disciplines in which it is used in modern 

life. Fractional derivatives have been defined via many 

suggested definitions including Riesz, Riemann-

Liouville, Grunwald-Letnikov, Caputo, and 

conformable fractional definitions [2]-[4]. Fractional 

partial differential equations (FrPDEs), are utilized for 
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modeling wide range of real-life applications. The 

FrPDEs gained importance and popularity because of 

their wide applications across many fields, including 

quantum physics, electrical circuits, and theoretical 

biology [5,6]. 

A significant amount of research has been done to find 

solutions for the FrDEs [7-11] and references therein. 

However, it can be difficult to find exact analytical 

solutions to the majority of these equations because of 

the complexity of nonlinear components and fractional 

derivatives; as a result, approximation and numerical 

approaches are acceptable for handling the issue. Thus, 

many iterative and hybrid methods have been proposed, 

such as the homotopy perturbation method (HPM) [12], 

the generalized differential transform method [13], the 

fractional variational iteration method (FrVIM) [14], the 

Adomian decomposition method (ADM) [15], the 

homotopy perturbation Sumudu transform method [16], 

the Kashuri Fundo transform and homotopy 

perturbation method [17] and references therein. 

     One of the most well-known and significant 

equations in the fields of statistical physics, natural 

science is the Fokker-Planck (F-P) equation. It was first 

proposed by Fokker and Planck to explain the Brownian 

motion of particles and the change in probability of a 

random function in space and time [18]. 

The objective of this study is to propose an iterative 

semi-analytic transform approach to approximate the 

solution of a time-fractional Fokker-Planck (FrF-P) 

partial differential equations. The suggested approach is 

termed the fractional Kashuri Fundo variational 

homotopy method (Fr-KFVHM), it is a combination of 
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the Kashuri-Fundo transform (KFT) [19], the VIM [20], 

and the HPM [21]. The Fr-KFVHM helps in avoiding 

the complications that often arise when trying to find 

the Lagrange multiplier (LagM) and the complex 

integrations that are employed in VIM. 

 

2. OVERVIEW OF THE FOKKER-PLANCK (F-P) 
EQUATION 

The following equation represents the general 

F-P equation [18]: 

 
𝜕𝑧(𝑥, 𝑡)

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝑄(𝑥)

+
𝜕2

𝜕𝑥2
𝑅(𝑥)]  𝑧(𝑥, 𝑡)                      (1) 

subject to, 

 𝑧(𝑥, 0) = 𝑓(𝑥) , 𝑥
∈ ℝ ,                                                   (2) 

The drift and the diffusion coefficients are 𝑄(𝑥) and 

𝑅(𝑥), respectively. The diffusion and drift coefficients 

might be time-dependent.That is, “(1)” can be written 

as: 

𝜕𝑧(𝑥, 𝑡)

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝑄(𝑥, 𝑡)

+
𝜕2

𝜕𝑥2
𝑅(𝑥, 𝑡)]  𝑧(𝑥, 𝑡) .              (3) 

Equation (1) represents mathematically a linear second 

order PDE of parabolic type. The following equation is 

a generalized version of “(1)” for M variables 

𝑥1, 𝑥2, … 𝑥𝑀 : 

 
𝜕𝑧(𝙭, 𝑡)

𝜕𝑡
= [− ∑

𝜕

𝜕𝑥𝑟

𝑄𝑟(𝙭)

𝑀

𝑟=1

+ ∑
𝜕2

𝜕𝑥𝑟𝜕𝑥𝑠

𝑅𝑟,𝑠(𝙭)

𝑀

𝑟,𝑠=1

]  𝑧(𝙭, 𝑡)      (4) 

subject to, 

𝑧(𝙭, 0) = 𝑓(𝙭) , 𝙭 = (𝑥1, 𝑥2, … 𝑥𝑀)
∈ ℝ𝑀                         (5) 

The nonlinear F-P (NLF-P) equation is the most 

common type of F-P equations and has significant 

applications in many fields, including engineering, 

pattern formation, psychology, neurosciences, 

population dynamics, nonlinear hydrodynamics, plasma 

physics, etc. The NLF-P equation is expressed as 

follows for the one variable case: 

𝜕𝑧(𝑥, 𝑡)

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝑄(𝑥, 𝑡, 𝑧)

+
𝜕2

𝜕𝑥2
𝑅(𝑥, 𝑡, 𝑧)]  𝑧(𝑥, 𝑡)        (6) 

  

3. VARIATIONAL ITERATION METHOD (VIM) 
Illustration of  the concept  VIM based on 

NLPDE [20]  is 

 𝑈z + 𝑇z =
𝑃(𝑥)                                                                       (7)  

where 𝑇 is nonlinear operator, 𝑈 is linear operator, and 

𝑃(𝑥) is an analytical function. Correction functional for 

“(7)” of VIM is 

 z𝑚+1(𝑥) = z𝑚(𝑥)

+ ∫ ƛ(𝜉)

𝑥

0

[𝑈z𝑚(𝜉) + 𝑇z𝑚(𝜉)

− 𝑃(𝜉)]𝑑             (8) 

The (LagM) ƛ(𝜉) may be determined by the variational 

theory. A restricted variation is z𝑚, i.e. 𝛿z𝑚 = 0 and the 

mth approximation is denoted by the index m. 

The approximation  z𝑚+1, 𝑚 ≥ 0 of z cab be computed 

by any selective function z0 and using LagM. To 

determine  ƛ(𝜉), integration by parts may be used; and 

the solution is given by, 

𝑧
= lim

𝑚→∞
z𝑚                                                                                 (9) 

 
4. KASHURI AND FUNDO TRANSFORM 

Let Ω be a set of functions of exponential order 

[19], 

Ω = (𝓀; |𝓀(𝑡)| ≤ 𝑁𝑒

|𝑡|

(𝑘𝑗)
2

  , 𝑡

∈ (−1)𝑗 ×, [0, ∞))     (10) 

where 𝑁, 𝑘1, 𝑘2 > 0. 
The KFT is defined as the following and denoted by the 

operator (: ) , 

𝓚[𝓀(𝑡)](𝓌) =
1

𝑣
∫ 𝓀(𝑡)𝑒

−𝑡
𝓌2

∞

0

𝑑𝑡

= 𝒜(𝓌)                    (11) 

where  𝑡 ≥ 0 ;  −𝑘1 < 𝑤 < 𝑘2 . 
Let 𝒜(𝓌) be the KFT of 𝓀(𝑡). The fundamental 

properties of KFT are [25] 

1. 𝓚[𝓀′(𝑡)](𝓌) =
𝒜(𝓌)

𝓌2

−
𝓀(0)

𝓌
                                   (12) 

2. 𝓚[𝓀′′(𝑡)](𝓌) =
𝒜(𝓌)

𝓌4
−

𝓀(0)

𝓌3

−
𝓀′(0)

𝓌
                   (13) 
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3. 𝓚[𝓀(𝑛)(𝑡)](𝓌)

=
𝒜(𝓌)

𝓌2n

− ∑
𝓀 (𝑘)(0)

𝓌2(n−k)−1

𝑛−1

𝑘=0

           (14)   

 

TABLE 1. The typical kft for some functions [19] 

𝓴(𝒕) 𝓚[𝓴(𝒕)](𝔀) = 𝓐(𝔀) 

1 𝓌 

𝒕𝒏 ,  n ≥ 𝟎 n! 𝓌2𝑛+1 

𝒆−𝝁𝒕 
𝓌

1 + 𝜇𝓌2
 

𝒔𝒊𝒏(𝝁𝒕) 
𝑎𝓌2

1 + 𝜇2  𝓌4
 

𝒄𝒐𝒔(𝝁𝒕) 
𝓌2

1 + 𝜇2𝓌4
 

 

Theorem 1. [22]. The KFT of the Riemann-Liouville 

fractional integral  Ձ𝑡
𝛼𝑧(𝑥, 𝑡) and the Caputo fractional 

derivative  𝐷𝑡
𝛼𝑧(𝑥, 𝑡) is given by 

 

i. 𝓚{Ձ𝑡
𝛼𝑧(𝑥, 𝑡)} = 𝓌2𝑚𝒜(𝑥, 𝓌),  

 

ii. 𝓚{𝐷𝑡
𝛼𝑧(𝑥, 𝑡)} =  

𝒜(𝑥,𝓌)

𝓌2𝑚 −

∑
𝟏

𝓌2(𝛼−𝑘)−1

𝝏𝒌𝒛(𝒙,𝟎+)

𝝏𝒕𝒌  𝒎−𝟏
𝒌=𝟎  

 

where  𝑚 − 1 < 𝛼 < 𝑚 ∈ 𝑁. 
 

iii. 𝓚 {
𝒕𝒏𝜶

Г(𝟏+𝒎𝜶)
} = 𝓌2𝑚𝛼+1 

 

5. HOMOTOPY PERTURBATION METHOD 
The basic idea of the HPM is explained by 

considering the following nonlinear system[21] , 

𝑈(z) + 𝑇(z) − 𝑔(𝑠) = 0 ,
𝑠 ∈ 𝜱                                (15) 

𝐵 (z,
𝜕z

𝜕𝑚
) = 0  , 𝑠

∈ 𝜫                                                  (16) 

where 𝑇 is nonlinear operator, 𝑈 is linear operator, and 

𝑔(𝑠) is an analytical function. 

The Homotopy technique for  “(15)” is, 

 𝓌(𝑟, 𝑝): 𝜱 × [0,1]
→ ℝ                                                      (18) 

satisfying, 

 𝔘(𝓌, 𝑝)
= (1 − 𝑝)[𝑈(𝓌) − 𝑈(z0)]
+ 𝑃[𝑈(𝓌) + 𝑇(𝓌) − 𝑔(𝑠)] = 0,       𝑠
∈ 𝜱                                                             (19) 

ℝ is the real numbers, 𝑝 ∈ [0,1] increases from 0 to 1, 

and z0 is initial approximate solution of “(19)” 

satisfying the boundary conditions  “(15)”. Obviously, 

from  “(19)”, we have 

 𝔘(𝓌, 0) = 𝑈(𝓌) − 𝐿(z0)
= 0                                         (20) 

 𝔘(𝓌, 1) = 𝑈(𝓌) + 𝑇(𝓌) − 𝑔(𝑠)
= 0                          (21) 

Suppose that the solution of  “(19)” can be written as a 

power series in 𝑝: 

𝓌 = 𝓌0 + 𝑝𝓌1 + 𝑝2𝓌2

+ ⋯                                           (22) 

The solution z of  (19), by Setting 𝑝 = 1 is, 

z = lim
𝑝→1

𝓌 = 𝓌0 + 𝓌1 + 𝓌2

+ ⋯                                  (23) 

For most cases,  “(23)” convergent, however  the 

nonlinear operator affects a rate of convergence. 

 
6. FRACTIONAL VARIATIONAL HOMOTOPY 
TRANSFORM METHOD (Fr-VHTM) 

Fr-VHTM is combined from the KFT, VIM, 

and HPM. The method begins by applying the KFT for 

both sides of a given DE. The resulting equation will be 

multiplied by the LagM to generate the recurrence 

relation. Then, the recurrence relation is limited to 

determine the LagM. The technique is significant since 

it does not require the integral part or the convolution 

theorem neither the convolution theorem nor the 

integral part used in VIM. 

Applying KFT of “(7)”,  yields, 

𝓚[𝑈𝑧 + 𝑇𝑧 − 𝑃(𝑥)]
= 0                                                       (24) 

Multiplying (24) by LagM ƛ(𝓌), we get 

ƛ(𝓌)𝓚[𝑈𝑧 + 𝑇𝑧 − 𝑃(𝑥)]
= 0.                                           (25) 

The recurrence relation to calculate the LagM is, 

z𝑚+1(𝑥, 𝓌) = z𝑚(𝑥, 𝓌)
+ ƛ(𝓌)𝓚[𝑈𝑧 + 𝑇𝑧
− 𝑃(𝑥)]               (26) 

The optimality criterion is employed to calculate the 

LagM ƛ(𝓌) by using the KFT and 
𝛿z𝑚+1(𝑥,𝓌)

𝛿z𝑚(𝑥,𝓌)
=

0.                                                                        (27)  

Then  ƛ(𝓌) = −𝓌2𝛼 . By using the value of LagM and 

the inverse of KFT in “(26)”, we obtain the approximate 

solution. 

 z𝑚+1(𝑥, 𝓌)

= z𝑚(𝑥, 𝓌) + 𝓚−1[−𝓌2α𝓚[𝑈𝑧 + 𝑇𝑧 − 𝑃(𝑥)]],

𝑚 = 0,1,2,3, …                                       (28) 

 The HPM can be expressed as follows for nonlinear 

terms, 

𝑇(z) = ∑ 𝑝𝑗Ң =

∞

𝑗=0

Ң0 + 𝑝Ң1 + 𝑝2Ң2

+ ⋯                       (29) 
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where  Ң𝑚′ s denote the He’s polynomials. 

Ң𝑚(z0 + z1 + z2 + ⋯ + z𝑚)

=
1

𝑚!

𝜕𝑚

𝜕𝑝𝑚
[𝑇 (∑ 𝑝𝑗z𝑗

∞

𝑗=0

)]

𝑝=0

,

𝑚 = 0,1,2,3, …                                        (30) 

The following approximations can be found, 

𝑝0

= z0(𝑥, 𝑡)                                                                            (31) 

𝑝1 = z1(𝑥, 𝑡) = −𝓚−1(32) 

𝑝2 = z2(𝑥, 𝑡)

= −𝓚−1 [𝓌2𝛼𝓚[𝑇(z1(𝑥, 𝑡))

− Ң(z1(𝑥, 𝑡))]]                                        (33) 

𝑝3 = z3(𝑥, 𝑡) = −𝓚−1 [𝓌2𝛼𝓚[𝑇(z2(𝑥, 𝑡))

− Ң(z2(𝑥, 𝑡))]]                      (34) 

and so on. 

z𝑚(𝑥, 𝑡) = z0 + z1 + z2 + z3

+ ⋯                                     (35) 

 
7. APPLICATIONS 

In number of practical scientific disciplines, 

including physics, engineering, the life sciences, and 

statistics, the Fokker-Planck equation has been 

considered as one of the most significant differential 

equations. The random motion of infinitesimally small 

particles in a changing medium is studied using the 

Fokker-Planck equation, and statistical processes and 

reactions in systems that rely on scattering and atomic 

activity are also examined. It is also a powerful tool for 

analyzing how materials are transported and how gases 

and liquids are distributed in engineering systems. To 

investigate heat transfer processes and the probability 

distribution of tiny particles, like electrons and photons, 

in electromagnetic systems, for instance, physicists 

utilize the Fokker-Planck equation. This equation is 

used in engineering to study the movement of matter 

and energy in physical and chemical systems. It is used 

to study biological reaction models and the activity of 

chemicals in living cells in the life sciences. The 

Fokker-Planck equation is additionally used in 

disciplines including statistics, economics, and finance. 

It is used to examine trends in stock price changes and 

market movements. In general, depending on the 

scientific field and the phenomenon being studied, the 

Fokker-Planck equation has a wide range of 

applications, whether in its form with integer derivatives 

or with fractional derivatives. 

 

Example 1: 
𝜕𝛼

𝜕𝑡𝛼 = [−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
 ] 𝑧  

𝑧(𝑥, 0) = 𝑥   ,     𝑥 ∈ [0,2] , 𝑡 ≥ 0 , 0 < 𝛼 ≤ 1  

[
𝜕𝛼

𝜕𝑡𝛼 + [
𝜕

𝜕𝑥
𝑥 −

𝜕 2

𝜕𝑥2

𝑥2

2
] 𝑧] =

0                                               (36)   

The recurrence relation  after applying the KFT for both 

sides of  “(36 )” , then multiplying by ƛ(𝓌) is, we 

obtain 

𝑧𝑚+1(𝑥, 𝓌) = 𝑧𝑚(𝑥, 𝓌) + ƛ(𝓌) [𝐾 [
𝜕𝛼

𝜕𝑡𝛼 +

 [
𝜕

𝜕𝑥
𝑥 −

                            
𝜕 2

𝜕𝑥2

𝑥2

2
] 𝑧]]                                                      (37)  

Using the KFT after considering  the variation of  “(37)” 

w.r.t the independent variable 𝑧𝑚.  

𝛿𝑧𝑚+1(𝑥, 𝓌) = 𝛿𝑧𝑚(𝑥, 𝓌) +

ƛ(𝓌) [(
1

𝓌2𝛼 𝛿𝑧𝑚(𝑥, 𝓌) − 𝑧(𝑥, 0) + 𝐾 [[
𝜕

𝜕𝑥
𝑥 −

𝜕 2

𝜕𝑥2

𝑥2

2
] 𝑧])]  

𝛿𝑧𝑚+1(𝑥, 𝓌) = 𝛿𝑧𝑚(𝑥, 𝓌) (1 +
1

𝓌2𝛼 ƛ(𝓌))  

When 
𝛿𝑧𝑚+1

𝛿𝑧𝑚
= 0 , 

(
1

𝓌2 ƛ(𝓌) = −1) × 𝓌2𝛼 , then 

ƛ(𝓌) = −𝓌2𝛼   

𝑧𝑚+1(𝑥, 𝓌) = 𝑧𝑚(𝑥, 𝓌) − 𝓌2𝛼  [𝐾 [
𝜕𝛼

𝜕𝑡𝛼 +

[
𝜕

𝜕𝑥
𝑥 −                               

𝜕 2

𝜕𝑥2

𝑥2

2
] 𝑧]]  

Taking the inverse of the KFT 

𝑧𝑚+1(𝑥, 𝓌) = 𝑧𝑚(𝑥, 𝓌) − 𝐾−1 [𝓌2𝛼 [𝐾[
𝜕𝛼

𝜕𝑡𝛼 +

                           [
𝜕

𝜕𝑥
𝑥 −

𝜕 2

𝜕𝑥2

𝑥2

2
] 𝑧]]]   

The HMP can be applied to have                                                                      

𝑧0 + 𝑝𝑧1 + 𝑝2𝑧2 + ⋯ = 𝑧𝑚(𝑥, 𝑡) +

𝑝𝐾−1 [𝓌2𝛼 [𝐾 [([[−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
]] 𝑧0) +

𝑝 ([−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
] 𝑧1) + 𝑝2 ([−

𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
] 𝑧2) +

⋯ ]]]                                                                                   (38) 

𝑝0: 𝑧0 = 𝑧0(𝑥, 𝑡) = 𝑥 ,  

𝑝1: 𝑧1 = 𝐾−1 [𝓌2𝛼  [𝐾 [−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
] 𝑧0]]  

           = 𝐾−1[𝓌2𝛼+1𝑥] = 𝑥
𝑡𝛼

Г(𝛼+1)
, 

𝑝2: 𝑧2 = 𝐾−1 [𝓌2𝛼  [𝐾 [−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
] 𝑧1]]  

 



First year 2024 ,Volume 1 , Issue 3    PSIJK 51-57 

 

           = 𝐾−1[𝓌4𝛼+1𝑥 ] = 𝑥
𝑡2𝛼

Г(2𝛼+1)
,  

𝑝3: 𝑧3 = 𝐾−1 [𝓌2  [𝐾 [−
𝜕

𝜕𝑥
𝑥 +

𝜕2

𝜕𝑥2

𝑥2

2
] 𝑧2]]  

           = 𝐾−1[𝓌6𝛼+1𝑥 ] = 𝑥
𝑡3𝛼

Г(3𝛼+1)
,  

𝑝𝑚: 𝑧𝑚 = 𝑥
𝑡𝑚𝛼

Г(𝑚𝛼+1)
= 𝑥 (1 +

𝑡𝛼

Г(𝛼+1)
+

𝑡2𝛼

Г(2𝛼+1)
+

𝑡3𝛼

Г(3𝛼+1)
+ ⋯ ) =

𝑥𝐸𝛼(𝑡𝛼)                                                                       (39)  

 
TABLE 2.    The 10th  fr-vhtm approximate solutions of    

Example 1  at α=1 

 

Example 2: 
𝜕𝛼

𝜕𝑡𝛼 = [−
𝜕

𝜕𝑥

𝑥

6
+

𝜕2

𝜕𝑥2

𝑥2

12
] 𝑧                                                     (40)  

𝑥 ∈ [0,2] , 𝑡 ≥ 0 , 0 < 𝛼 ≤ 1  

𝑧(𝑥, 0) = 𝑥2    The recurrence relation  after applying 

the KFT for both sides of "(40)", then multiplying by 

ƛ(𝓌) is, we conclude that 

𝑧𝑚+1(𝑥, 𝓌) = 𝑧𝑚(𝑥, 𝓌) + ƛ(𝓌) [𝐾 [
𝜕𝛼

𝜕𝑡𝛼 +

[
𝜕

𝜕𝑥

𝑥

6
−

𝜕 2

𝜕𝑥2

𝑥2

12
] 𝑧]]                                                                                   (41)  

Applying the same steps as in Example1, we have 

ƛ(𝓌) = −𝓌2𝛼  , and 

𝑝0: 𝑧0 = 𝑧0(𝑥, 𝑡) = 𝑥2,   

𝑝1: 𝑧1 = 𝐾−1 [𝓌2𝛼  [𝐾 [−
𝜕

𝜕𝑥

𝑥

6
+

𝜕2

𝜕𝑥2

𝑥2

12
] 𝑧0]]  

           =
𝑥2

2

𝑡𝛼

Г(𝛼+1)
 

𝑝2: 𝑧2 = 𝐾−1 [𝓌2𝛼  [𝐾 [−
𝜕

𝜕𝑥

𝑥

6
+

𝜕2

𝜕𝑥2

𝑥2

12
] 𝑧1]] 

𝑝3: 𝑧3 = 𝐾−1 [𝓌2  [𝐾 [−
𝜕

𝜕𝑥

𝑥

6
+

𝜕2

𝜕𝑥2

𝑥2

12
] 𝑧2]]  

           = 𝐾−1 [𝓌6𝛼+1 𝑥2

8
 ] =

𝑥2

8

𝑡3𝛼

Г(3𝛼+1)
,  

𝑝𝑚: 𝑧𝑚 =
𝑥2

2𝑚

𝑡𝑚𝛼

Г(𝑚𝛼+1)
   

= 𝑥2 (1 +
𝑡𝛼

2Г(𝛼 + 1)
+

𝑡2𝛼

22Г(2𝛼 + 1)
+

𝑡3𝛼

23Г(3𝛼 + 1)

+ ⋯ ) =
𝑥2

4

𝑡2𝛼

Г(2𝛼 + 1)
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Arabic Abstract 

 يعد تحويل .(FrF-P) بلانك التفاضلية الجزئية للزمن الكسرية-تحليلية تكرارية في هذه الورقة لحل معادلات فوكرتم اقتراح طريقة تحويل شبه 

Kashuri-Fundo   وطريقة التكرار المتغير المكونات الرئيسية للطريقة المقترحة. يتم أخذ المشتق الكسري بمعنى كابوتو.  يتم تقديم الحل على شكل

 .قاربة بسرعة مع معاملات بسيطة. تم حل بعض الأمثلة التوضيحية لتوضيح مدى عملية وفعالية النهج المقترحسلسلة قوى كسرية مت
 

 
 


