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A B S T R A C T  
 

The optimal approximation of functional subsets within standard spaces facilitates data 

modeling and management of linear and nonlinear systems. In this paper, the best approximation in a 

real standard linear space X is described by the Kolmogorov theorem. In addition, the concepts of 
proximal set, smooth space, sun, sun point, and their relationship with the Kolmogorov condition are 

discussed. Finally, the effectiveness of using the best approximation in practical situations to achieve 
high accuracy in the computation of standard linear spaces is highlighted. 

 

 

 

1. INTRODUCTION1 
In recent decades, there has been an increasing 

need to study the importance of best approximation 

within the field of functional analysis and in particular 

within the field of standard linear spaces, [1-4]. This 

study seeks to provide a detailed description of the best 

approximation in real normed linear space X through a 

specialized theorem that highlights the main aspect of the 

theoretical trends. Furthermore, the fundamental 

concepts within this trend related to close sets, suns and 

sun points, how these concepts are interconnected, and 

their importance for Kolmogorov’s condition are 

investigated [5]. This provides comprehensive coverage  

of approximation theory, practical effect, and its 

extension into real standard spaces. The following will be 
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the setting for this paper: We refer to W to be as a 

topological space that is compact and Hausdorff [6]. 

W(T) will denote the space of real continuous functions 

on T unless explicitly stated, and the complex space 

W(T) is also being considered. The uniform standard is 

installed in the spaces W(T). Let B be a non-empty subset 

of W(T). The uniform norm is defined by nown as the 

distance between u and B. Therefore, 

∥ u ∥= max
t∈𝒯

 |u(t)| for all u ∈ W(T) , (1) 

And  

𝑑(𝑢 ,  𝐵) = inf
ℎ∈𝐵

∥ 𝑢 − ℎ ∥  for 𝑢 ∈ W(𝒯) , (2) 

 
 

NOMENCLATURE 

W a topological space that is compact and Hausdorff 

W(T) the space of real continuous functions on T 

x Real Normed Spaces 

T T is a compact Hausdorff topological space 

crit Critical Point 
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It is k 

𝑃𝐵(𝑢) = {ℎ ∈ 𝐵 : ∥ 𝑢 − ℎ ∥= 𝑑(𝑢 , 𝐵) } , (3) 

 

As a collection of the best approximations of u from B. 
Now given u ∈ W(𝒯), the main problem is finding an 

element h0 ∈ B such that ∥ u − h0 ∥≤∥ u − h ∥ , for all 

h ∈ B. Such an element, if present, is called the best 

approximation element  (closest element ) to u from B. 
The number ∥ u − h0 ∥ is then the distance from u to B 

and 𝑑(𝑢, 𝐵) =∥ u − h0 ∥. The best approximation  when 

PB(u)  is non-empty? (the members of PB(u) will be 

called best approximation to 𝑢 from 𝐵), that is, which 

properties of B and the space ensures that PB(u) ≠ ∅ for 

each u ∈ W(𝒯), in this case, 𝐵 is said to be proximinal 

in W(𝒯). This is obtained by the following theorem: 

Theorem 1: [6]. Let 𝐵 be a finite dimensional subspace 

of a normed linear space 𝒳. Then u or each u ∈ X , such 

that ∃ an element in 𝐵 of best approximation to u.  
Another characterization of best approximation in W(𝒯) 

is given by the following theorem . 

 

Theorem 2 .[7]. A function h0 in B is the best 

approximation to u ∈ W(T) ⇔  ∀ h ∈ B  

max
t∈𝒯0

Re {[u(t) − h0(t)]h(t)}  ≥  0 

where 𝒯0 =crit(u − h0). 

Lemma 1. Let R = {e + λ(x − e): λ ≥ 0}. Then 

⋃
𝑦∈𝑅

𝐵(𝑦, ∥ 𝑦 − 𝑒 ∥) = int⋂{𝜑−1((−∞, 𝜑(𝑒)]) :  𝜑

∈ 𝒳∗, 𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥ ∥ 𝑒 − 𝑥 ∥}

= ⋂{ 𝜑−1 ((−∞, 𝜑(𝑒))) :  𝜑

∈ 𝒳∗ ,  𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥ ∥ 𝑒 − 𝑥 ∥ } . 

Proof: Suppose  𝐵 be a magnification with center 𝑠, that 

is, 

𝐵: 𝒳 → 𝒳
𝐵(𝑡) = 𝑒 + 𝜆(𝑡 − 𝑒),  for 𝑡 ∈ 𝒳,

 

where λ > 0. B is a bijection. On the other hand, the open 

ball 𝔅(x, ∥ x − e ∥) and the single point set {e} are two 

disjoint convex sets. So there exists (by the separatior 

theorem, [8]) φ ∈ 𝒳∗ such that 

𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥ ∥ 𝑒 − 𝑥 ∥ 

𝜑(𝑡) ≤ 𝜑(𝑒),  for all  𝑡 ∈ 𝔅(𝑥, ∥ 𝑥 − 𝑒 ∥) . 

Since   𝐵(𝔅(𝑥, ∥ 𝑥 − 𝑒 ∥)) = 𝔅( 𝐵(𝑥) , ∥ 𝑥 − 𝑒 ∥ ) then 

for each 𝑧 ∈ 𝔅( 𝐵(𝑥), 𝜆 ∥ 𝑥 − 𝑒 ∥ ), 𝑧 = 𝑀(𝑡) = 𝑠 +
𝜆(𝑡 − 𝑒), for some 𝑡 ∈ 𝔅(𝑥, ∥ 𝑥 − 𝑒 ∥). It follows 

that 𝜑(𝑧) = 𝜑(𝑒) + 𝜆𝜑(𝑡 − 𝑒)(𝑡 − 𝑒) ≤ 𝜑(𝑒) . So for 

each 𝑦 in 𝑅 and 𝑧 ∈ 𝔅(𝑦, ∥ 𝑦 − 𝑒 ∥), 𝑧 ∈

𝜑−1 ((−∞, 𝜑(𝑒))), for each 𝜑 ∈ 𝒳∗ for which 𝜑(𝑒 −

𝑥) =∥ 𝜑 ∥∥ 𝑒 − 𝑥 ∥. That is 

 ⋃
𝑦∈𝑅

𝔅(𝑦, ∥ 𝑦 − 𝑒 ∥) ⊂ int⋂{ 𝜑−1((−∞, 𝜑(𝑒)]) : 𝜑 ∈

𝒳∗ ,  𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥∥ 𝑒 − 𝑥 ∥ } ⊂

⋂{ 𝜑−1 ((−∞, 𝜑(𝑒))) :  𝜑 ∈ 𝒳∗ ,  𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥ ∥

𝑒 − 𝑥 ∥ } . 

Now suppose that 𝑧 ∉ ⋃𝑦 ∈ 𝑅𝔅(𝑦, ∥ 𝑦 − 𝑒 ∥). Thus the 

open set ⋃𝑦 ∈ 𝑅𝔅(𝑦, ∥ 𝑦 − 𝑒 ∥) and line scgment [𝑧, 𝑒] 

are two disjoint convex sets and so by separation thcorem 

thero exists 𝜑 ∈ 𝒳∗ that is 𝜑(𝑒 − 𝑥) =∥ 𝜑 ∥∥ 𝑒 − 𝑥 ∥ 

which separate two sets [𝑧, 𝑒] and ⋃𝑦∈𝑅𝔅(𝑦, ∥ 𝑦 − 𝑒 ∥), 

i.e., 𝑧 ∉ 𝜑−1 ((−∞, 𝜑(𝑒))) and so 

𝑧 ∉ ⋂ { 𝜑−1 ((−∞, 𝜑(𝑒))) :  𝜑 ∈ 𝒳∗ ,  𝜑(𝑒 − 𝑥) =

∥∥𝜑∥∥∥𝑒 − 𝑥∥ }    ∎ 

 

2.  KOLMOGROV'S AND SUNS DESCRIPTION 
Let  𝐵 is a subset of 𝒳 that is not empty and (B 

may not be a linear subspace of 𝒳). If𝑥 ∈ 𝒳 ∖ Band 𝑒 ∈
𝑃B(𝑥) , it is always true that 𝑒 ∈ 𝑃B(𝑦) ,for 𝑦 = 𝑒 +
𝜆(𝑥 − 𝑒) , for all 𝜆 ∈ [0,1]  (since 𝑦 = 𝜆𝑥 + (1 − 𝜆) e 

then 

∥ 𝑥 − 𝑦 ∥ +∥ 𝑦 − 𝑒 ∥= (1 − 𝜆) ∥ 𝑥 − 𝑒 ∥ +𝜆∥𝑥 − 𝑒∥
= ∥𝑥 − 𝑒∥ 

and for each ℎ ∈ B it follows that  

∥ 𝑦 − ℎ ∥≥∥ 𝑥 − ℎ ∥ −∥ 𝑥 − 𝑦 ∥≥∥ 𝑥 − 𝑒 ∥ −∥ 𝑥 − 𝑦 ∥
=∥ 𝑦 − 𝑒 ∥ , 

that is, 𝑒 ∈ 𝑃B(𝑦)). The point 𝑒 is said to be a Solar point 

in  B for 𝑥,if 𝑒 ∈ 𝑃B(𝑦) for every 𝑦 = 𝑒 + 𝜆(𝑥 − 𝑒), for 

𝜆 ∈ (1, ∞). That is, 𝑒 is a Solar point in B for 𝑥, if 𝑒 ∈
𝑃B(𝑦), for every 𝑦 in the half-line 𝑅 = {𝑒 + 𝜆(𝑥 −
𝑒): 𝜆 ≥ 0}. A set B is said to be a sun in 𝒳 , if for each 

𝑥 ∈ 𝒳 ∖ B,the set 𝑃B(𝑥) contains a Solar point for 𝑥 and 

the set 𝑅 denotes a ray of the sun which passes through 

𝑥. There are numerous variant concepts: 

Alpha-sun, beta-sun, gamma-sun and delta -sun, meta 

suns and strict suns. The concept of `sun’ seems to be the 

most important. It was formulated in the 50′s by Efimov 

and Stechkin [8]. It is important by the reason of results 

such as the following theorem.  

Theorem 3: [9,10]. (Vlasov): If  dim 𝒳 < ∞ and M is a 

Chebyshev subset of 𝑋 then  𝐵 is a sun. 

 A space 𝒳 is said to be Smooth if for each 𝑥 ∈ 𝐸(𝒳) 

(the sphere 𝐸𝒳(0,1) in 𝒳) there is a unique hyperplane 

of support to 𝐸(𝒳) at 𝑥. The condition is equivalent to 

the condition that the norm ∥. ∥ be Gateaux differentiable 

at each point of   𝒳\{0}. 
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Theorem 4. If  𝑋 is a Smooth space and 𝐵 is a sun in  𝑋 

then 𝐵 is convex.  

Proof: Suppose that 𝑥 ∉ B, so there is a Solar point in B 

for 𝑥,say 𝑒 ∈ B. Ther 𝔅(𝑥, ∥ 𝑥 − 𝑒 ∥) ∩ B = ∅ and for 

each 𝑦 in the half-line 𝑅 = {𝑒 + 𝜆(𝑥 − 𝑒): 𝜆 ≥ 0}, it 

follows that 𝐵(𝑦, ∥ 𝑦 − 𝑒 ∥) ∩ B = ∅. So (⋃𝑦∈𝑅𝐵(𝑦, ∥

𝑦 − 𝑒 ∥)) ⋂B = ∅. Since 𝒳 is a Smooth space then 

⋃𝑦∈𝑅  𝔅( y, ∥ y −  e ∥)  =  𝐻𝑥 is an open half- space ( by  

lemma 1) . So its complement is a closed half-space 

containing B and not 𝑥. Let 𝑈𝑥 = 𝒳\𝐻𝑥 . The intersection 

over all 𝑥 ∉ B of these closed half-spaces is convex and 

equal to B,that is , ⋂𝑥 ∉ ℳ𝐹𝑥 = B is convex.   ∎ 

The following theorem is derived from Theorems 1 and 

2 as well as Vlasov's Theorem [10].  

Theorem 5: If dim  X < ∞ and X is a Smooth space then 

a Chebyshev subset of X is a closed convex set. 

 The concept of Solar point is what one needs to make 

sense of Kolmogorov’s Characterization of best 

approximation. 

Theorem 6. Suppose that 𝑥 ∈ X ∖ B and h0 ∈ ℳ. Then 

the following facts are equivalent:  

1. ℎ0 ∈ 𝑃B(𝑥) and ℎ0 𝑖𝑠 a Solar point for 𝑥 𝑖𝑛 B  

2. [ℎ0, ℎ] ∩ 𝐵(𝑥, ∥ 𝑥 − ℎ0 ∥) = ∅, for all ℎ ∈ B 

(𝑡ℎ𝑎𝑡 𝑖𝑠, ℎ0 ∈ 𝑃[ℎ0,ℎ](𝑥), for each ℎ ∈ B). 

3. 3-For any  h ∈ B,there exists 𝜑 ∈ext 𝐸(X∗)  

such that    𝜑(ℎ0 − 𝑥) =∥ ℎ0 − 𝑥 ∥ , 

𝜑(ℎ) ≥ 𝜑(ℎ0) , 

Where 𝐸(X∗) is the unit sphere in X∗. 

4.  each h ∈ B, there exists φ ∈ E(X∗) such that 

φ(h0 − x) =∥ h0 − x ∥ , φ(h) ≥ φ(h0) . 

It is worth noting that the third condition of the above 

theory represents the abstract form of Kol- mogorov’s 

condition. Let 𝒳 = W(𝑇), where 𝑇 is a compact 

Hausdorff topological space, B is a subspace of W(𝒯) 

and 𝑓 ∈ W(𝒯) ∖ B,since W(𝒯)∗ ≅ ℳ(𝒯), the space of 

regular Borel measure on 𝒯, part (3) implies that, for each 

𝑔 ∈ B, there exists measure 𝜇 ∈ext 𝐸(B(𝒯)) ≅ext 

𝐸(𝒳∗) such that : 

{

𝜇(ℎ0 − 𝑢) = ∥∥ℎ0 − 𝑢∥∥,

𝜇(ℎ) ≥ 𝜇(ℎ0).
 

 

On the other hand, 

ext 𝐸(B(𝒯)) = {𝜇 ∈ B(𝒯) :  ±𝜇({𝑡}) =∥ 𝜇 ∥= 1 

for some 𝑡 ∈ 𝒯} = {𝜇 ∈ B(𝒯) :

∥ 𝜇 ∥= 1 , | supp 𝜇| = 1}

 

= {𝜇 = ±𝑒(𝑡) :  𝑡 ∈ 𝒯 } , 

where 𝑒(𝑡) = 𝛿𝑡 is evaluation functional. This implicitly 

means that: 

𝜀(ℎ0 − 𝑢)(𝑡) =∥ ℎ0 − 𝑢 ∥ , 

𝜀(ℎ − ℎ0)(𝑡) ≥ 0 , 

where 𝜀 ∈ {−1,1}. It follows that 

|ℎ0(𝑡) − 𝑢(𝑡)| =∥ ℎ0 − 𝑢 ∥ , 

(ℎ0(𝑡) − 𝑢(𝑡))(ℎ(𝑡) − ℎ0(𝑡)) ≥ 0 . 

Thus, by the notation of Kolmogorov’s theorem, 𝑡 ∈ 𝒯0 

and for ℎ1 = ℎ0 − ℎ ∈ B 

[𝑢(𝑡) − ℎ0(𝑡)]ℎ1(𝑡) ≥ 0 , 

That is, in the real case, max
𝑡∈𝑇0

[𝑢(𝑡) − ℎ0(𝑡)]ℎ1(𝑡) ≥ 0 , is 

satisfied. 

Theorem 7. Let B be a finite dimensional subspace of 

W(𝒯). If 𝑢 ∈ W(𝒯)\B  and ℎ0 ∈ B , then, the 

conditions listed in the following points are equivalent: 

1.   h0 ∈ PB(u) , 

2. Kolmogorov’ s condition:  

max
t∈T0

Re {[u(t) − h0(t)]h(t)} ≥ 0 , 

for each h ∈ B , where 𝒯0 =crit(f − h0) , 

3.The condition of the complex Characterization 

Theorem: 

0 ∈ co {[u(t) − h0(t)] v(t) :  t ∈ crit(u − h0)} , 

4.There exists a non- empty finite subset A = {t1, … , tτ} 

of 𝒯 and there is a non-zero value α(t) for t ∈ A with 

∑ |α(t)|t∈A = 1 , such that   

∑ α

t∈A

(t)v(t) = 0 , 

and 

∑ α

t∈A

(t)[u(t) − h0(t)] = ∥∥u − h0∥∥ , 



2024, Volume 1, Issues 4    PSIJK 78-83 

 

5.There exists a non-empty finite subset A = {t1, … , tr}  

of 𝒯 and there exists a non-zero α(t) for t ∈ A with ∑t∈𝒜

|α(t)| = 1 such that we obtain  

𝑓(𝑡) − ℎ0(𝑡) = 𝜎(𝑡) ∥ 𝑢 − ℎ0 ∥ ,  𝑓𝑜𝑟 𝑡 ∈ 𝐴 , 
where 𝜎(𝑡) = sgn 𝛼(𝑡), 𝑓𝑜𝑟 𝑡 ∈ 𝐴. 
Proof: The equivalence (1) ⇔ (2) and (𝑎) ⇔ (𝑐) are in 

Kolmogorov’s’Characterization implies that (1) ⇔ (5). 
We show that (4) ⇔ (5). Now assume that (4) holds. 

The equality in above  theorem  implies that 

∥ 𝑢 − ℎ0 ∥= |∑ 𝛼

𝑡∈𝐴

(𝑡)[𝑢(𝑡) − ℎ0(𝑡)] |

≤ ∑ |𝛼(𝑡)|

𝑡∈𝐴

 | 𝑢(𝑡) − ℎ0(𝑡) | 

Thus 

∑ | 𝛼(𝑡)[ 𝑢(𝑡) − ℎ0(𝑡) ]|

𝑡∈𝐴

=∥ 𝑢 − ℎ0 ∥

= ∑ 𝛼

𝑡∈𝐴

(𝑡)[ 𝑢(𝑡) − ℎ0(𝑡) ] , 

and so 𝛼(𝑡)[𝑢(𝑡) − ℎ0(𝑡)] ≥ 0 , for 𝑡 ∈ 𝐴. On the other 

hand, |𝛼(𝑡)| > 0 , ∑ ∈𝑡 𝐴|𝛼(𝑡)| = l and 

|𝑢(𝑡) − ℎ0(𝑡)| ≤∥ 𝑢 − ℎ0 ∥ ,  for 𝑡 ∈ 𝐴 . 

It follows that |𝑢(𝑡) − ℎ0(𝑡)| =∥ 𝑢 − ℎ0 ∥ , for all 𝑡 ∈ 𝐴, 

that is, 𝐴 ⊂ crit(𝑢 − ℎ0). 

since 𝑢 not in B then 𝑢(𝑡) − ℎ0(𝑡) ≠ 0, for 𝑡 ∈ 𝐴. So 

𝛼(𝑡) ≠ 0, for 𝑡 ∈ 𝐴 implies that 

𝛼(𝑡)[𝑢(𝑡) − ℎ0(𝑡)] ≠ 0 , for all ∈ 𝐴 . Therefore, 

𝛼(𝑡)[ 𝑢(𝑡) − ℎ0(𝑡) ] > 0 ,  for all 𝑡 ∈ 𝐴, 

that is, 𝜎(𝑡) = sgn 𝛼(𝑡) = sgn [𝑢(𝑡) − ℎ0(𝑡)], for all 𝑡 

in 𝐴 . Since 𝐴 ⊂crit(𝑢 − ℎ0) then 𝑢(𝑡) − ℎ0(𝑡) =
𝜎(𝑡)∥∥𝑢 − ℎ0∥∥, for 𝑡 ∈ 𝐴. Thus (4) → (5). Also, 

obviously (5) → (4).  ∎ 

Remark 1. In Theorem 7. (4), (5), 1≤ 𝑟 ≤ 𝑛 + 1 In the 

actual instance and  1 ≤ 𝑟 ≤ 2𝑛 + 1 in the complex case 

and the set 𝐴 is a basic set for B and 𝑢.  

Theorem 8: If 𝑟 is the smallest integer such that part (4) 

of Theorem 7 is satisfied then for each 𝑗 = 1, … , 𝑟  the 

functional  𝑣(𝑡1), … , 𝑣(𝑡𝑗)̂, … , 𝑣(𝑡𝑟)  are linearly 

independent. 

Proof:  Let there exists 𝑗, 1 ≤ 𝑗 ≤ 𝑟 such that the 

functionals 

𝑣(𝑡1), … , 𝑣(𝑡𝑗)̂, … , 𝑣(𝑡𝑟) , 

are linearly dependent. So 𝑣(𝑡𝑘) ∈ sp{𝑣(𝑡𝑖): 1 ≤ 𝑖 ≤

𝑟, 𝑖 ≠ 𝑗, 𝑘} for some 𝑘 ≠ 𝑗 𝑣(𝑡𝑗) ∈ sp{𝑣(𝑡𝑖): 𝑖 ≠ 𝑗, 1 ≤

𝑖 ≤ 𝑟} then (𝑡𝑗), 𝑣(𝑡𝑘) ∈ sup{ 𝑣(𝑡𝑖):  𝑖 ≠ 𝑗 , 𝑘 ,  1 ≤ 𝑖 ≤

𝑟 }, that is, dim(sp { 𝑣(𝑡𝑖) :  1 ≤ 𝑖 ≤ 𝑟 }) ≤ 𝑟 − 2. 

Therefore dim(B|𝐴) ≤ 𝑟 −
2  𝑠𝑖𝑛𝑐𝑒 ( sup{𝑣(𝑡𝑖): 1 ≤ 𝑖 ≤ 𝑟} = (B|𝐴)∗ and dim B∗ = 

dim B). Let ℎ0 ∈ 𝑃B(𝑢). It follows that 0 ∈ co{(𝑢(𝑡) −

ℎ0(𝑡))𝑣(𝑡): 𝑡 ∈ 𝐴} . Now by implication (1) → (4) in 

Theorem 7, applied to B|𝐴 ⊆ 𝐶(𝐴), 𝑢|𝐴 and ℎ0|𝐴, there 

exists a subset 𝐴′ ⊆ 𝐴 with card 𝐴′ ≤ dimB|𝐴 + 1 ≤ 𝑟 −
1 and there exist non-zero 𝛼′(𝑡) for each 𝑡 ∈ 𝐴′ with 
∑ |𝛼′(𝑡)|𝑡∈𝐴′ = 1, such that 

∑ 𝛼′

𝑡∈𝐴′

(𝑡) 𝑣(𝑡)  =  0 . 

But by our hypothesis 𝑟 is the smallest integer such that 

∑ 𝛼𝑡∈𝐴 (𝑡)𝑣(𝑡) = 0  is satisfied. Which is a 

contradiction. This completes the proof.       ∎ 

Remark 2. In the proof of above Lemma, we claimed 

that sp 𝑒(𝒯) = B∗. If it is not, then sp 𝑒(𝒯) ⊊ B∗.Then 

there exists 𝜑 ∈ B∗\{0} such that 𝜑(sp 𝑣(𝒯)) = {0}. But 

𝜑 = ℎ for some ℎ ∈ B and 𝑣(𝑇)(ℎ) = {0}, that is, 

ℎ(𝒯) = {0}, which is a contradiction. Finally, future 

research may focus on translating these findings into real-

world scenarios, such as mathematical optimization as in 

[10]. 

3. CONCLUSIONS 
According to Kolmogorov's theorem, the best 

approximation in a real standard linear space X is 

described. Furthermore, the concepts of proximal set, 

smooth space, sun, sun point, and their relationship with 

the Kolmogorov condition are discussed. The 

effectiveness of using the best approximation in 

situations where high accuracy in calculating standard 

linear spaces is required is revealed. 
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Arabic Abstract 

ذه البحث، يتم وصف أفضل إن التقريب الأمثل للمجموعات الفرعية للدوال داخل الفضاءات القياسية يسهل نمذجة البيانات وإدارة الأنظمة الخطية وغير الخطية. في ه

، والفضاء السلس، والشمس، ونقطة الشمس، بواسطة نظرية كولموغوروف. بالإضافة إلى ذلك، تتم مناقشة مفاهيم المجموعة القريبة Xتقريب في فضاء خطي قياس حقيقي 

 فضاءات الخطية القياسية.وعلاقتها بشرط كولموغوروف. أخيرًا، تم تسليط الضوء على فعالية استخدام أفضل تقريب في المواقف العملية لتحقيق دقة عالية في حساب ال

 
 


