Response of maize grown in calcareous soils to levels of agricultur-al sulfur, thiobacillus bacteria and nano-zinc
DOI:
https://doi.org/10.59658/jkas.v11i1.1437Keywords:
Maize, Calcareous soils, Agricultural sulfur, Thiobacillus bacteria, Nano-zincAbstract
A field experiment was conducted in spring season of 2022 according to a randomized complete block design with three replications (RCBD). The experiment included three factors. The first included three levels of agricultural sulfur (0, 1500, and 3000 kg ha-1). The second factor included two levels of thiobacillus bacteria, which are the control treatment (no addition) and the treatment with bacteria. The third factor included three concentrations of nano-zinc (0, 50, and 100 mg L-1). The results showed an excellent level of sulfur (3000 kg ha-1) in the grain yield (8.06 Mg ha-1), the percentage of nitrogen in the grains (1.72%), the percentage of phosphorus in the grains (0.53%) and the percentage of protein in grains is (10.79%), and the percentage of sulfur in grains is (0.270%). As the results showed that the second factor was superior when adding thiobacillus bacteria in the weight of 500 grains and the total grain yield (154.64 g and 7.52 Mg ha-1, respectively). As for nano-zinc, the third level (100 mg L-1) excelled in percentage of nitrogen (1.62%), phosphorus (0.41%), protein (10.79%) and sulfur (0.239%) in Grains, and the weight of 500 grains (155.53 g), with the exception of the total yield characteristic in which the level excelled (50 mg L-1) with an average of (8.01 mg L-1). The interaction between the three factors also gave a positive effect on most of the traits under study.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Copyright (c) 2024 is the Author's article. Published by the Journal of Kerbala for Agricultural Sciences under a CC BY 4.0 license
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing Terms
All articles are published under a Creative Commons License and will be directed to the Creative Commons Attribution 4.0 International License (CC BY 4.0) That permits use, distribution, and reproduction in any medium, provided the original work is properly cited. This license also allows the work to be used for commercial purposes.
Use by both non-commercial and commercial users
This content is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting use by both non-commercial and commercial users. Individual users may access, download, copy, display, and redistribute the articles to colleagues, as well as adapt, translate, and text- and data-mine the content, subject to the following conditions:
- The author's moral rights, including the right of attribution and the right to protect their work from derogatory treatment, are respected.
- Where content in the article is identified as belonging to a third party, users must ensure that any reuse complies with the copyright policies of the owner of that content.
- If the article content is reused for research or educational purposes, users should maintain a link to the appropriate bibliographic citation, including the DOI and a link to the published version on the journal's website.