A comparative study between the linear discriminant analysis method and the core discriminant analysis method - an applied study
Keywords:
Linear discriminant analysis, Kernel discriminant analysis, Bandwidth, Classification error.Abstract
In this research, two methods were used to classify data and they are Linear Discriminant Analysis and method Kernel Discriminant Analysis, and they are the two most statistical methods used in data analysisas requiring these methods provide a number of hypothesesThe most important of these is that the explanatory variables are distributed in a multivariate normal distribution. This research aims to find the discriminatory function of each,And used as a function of classification (discrimination) of the two methods among patients,Where the use of real data for the two groups of patients infected and non-infected and The results were obtained using the Statistical Program (SPSS) for the linear discriminant analysis methodand (R – Package) for the kernel discriminant analysis method. andIt was found that the method of linear discriminant analysis is better because it gives less error classification of data. as it has been a comparison between the two modes in accordance with the standard classification error probability of (Misclassification).
References
اولا: المصادر العربية
ابراهيم, علي عبد الحافظ, (2008), " استخدام مقياس متعدد الابعاد وانموذج الدالة التمييزية لتحليل التركيب الكيميائية لنماذج الحليب المجفف", مجلو جامعة النهرين, كلية العلوم, المجلد 11(1), ص: 46-57 .
الوالي , رنا محمود حسن, (2013)," تقدير الحاجة غير الملباة لتنظيم اداء اسرة في فلسطين", رسالة ماجستير, كلية الاقتصاد والعلوم الادارية, قسم الاحصاء التطبيقي , جامعة الازهرــــ غزة.
جواد, عباس ناجي, (2010), " المفاضلة بين طرق تقدير الدوال الاقتصادية ذات المتغيرات التابعة النوعية", مجلة تكريت للعلوم الادارية والاقتصادية , جامعة تكريت, كلية الادارة و الاقتصاد, المجلد-6/ العدد – 18.
حامد, رائد عبد القادر, الفخري, نعمة عبدالله, عزيز, ذكاء يوسف, (2011), " تعدين بيانات مشتركي خدمة الانترنيت باستخدام المنطق المضبب والدالة التمييزية", المجلة العراقية للعلوم الاحصائية, كلية الادارة والاقتصاد, قسم نظم المعلومات الادارية, جامعة الموصل, العدد(19), ص (197-218) .
عبد الكريم, انوار ضياء, (2006), " استخدام الطرائق التمييزية الاحصائية لتشخيص بعض امراض القلب ", مجلة جامعة كركوك, الدراسات العلمية, المجلد (1), العدد (2).
مصطفى, خولة موسى, مصطفى, مي صادق, (2010), " التحليل التمييز واستعمالاته طريقة التصنيف", المجلة العراقية للعلوم الاحصائية, كلية التربية, قسم الرياضيات, جامعة الموصل, العدد (18).
ثانياً: المصادر الاجنبية
Anil, K. G. and Bandyopadhy, S . (2006) , “ Adaptive smoothing in kernel discriminant analysis” , Australian National University, Vol. 18, No.2, PP. 181- 197.
Anil,K.G. and Chaudhuri,P. (2004) , “Optimal smoothing in kernel discriminant analysis” , Indian Statistical Institute , Calcutta / statisticasinicaPP. 457-483.
Guidoum,A.C. ) 2013(, “Kernel Estimator and Bandwidth selection for Density and its Derivatives”,Faculty of Mathematics, University of Science and Technology HouariBoumediene. ,TheKedd Package /version 1.0.0.
Duong,T. (2004), “Bandwidth selectors for multivariate kernel density Estimation”,This thesis is presented for the degree of Doctor of Philosophy at the University of Western.
Duong,T. (2007), ” Ks : Kernel density estimation and kernsl discriminant analysis for multivariate data in R”, Published by the American statistical Association in Journal of Statistical Software .Vol. 21, Issue. 7.
Duong,T. , Hazelton,M . (2004), “Bandwidth selectors for multiveiatekernel density Estimation” , University of Wetern Australia .
Ledl, T.( 2004) , “Kernel density estimation : Theory and Application in discriminant analysis”, university by of Vienna ,Published in Austrian Journal of statistics , vol. 33, NO. 3,PP.267 – 279.
Lu,J.Plataniotis, K.N., Venetsanopoulos,A.N.andWang,J. (2005) , “An efficient kernel discriminant analysis method”,University of Toronto, Ontario, Canada ,Published by Elsevier B.V, vol. 38, Issue. 10 ,PP. 1788 – 1790.
Zhang,X., Maxwell L. K., Rob .J. H . (2004), “Bandwidth selection for multivariate kernel density estimation using CMC”, MonashUniversity,Australia.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Economics and Administration College - Karbala University
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain the copyright of their papers without restrictions.